摘要 本文对平视显示器 (HUD) 进行了文献研究,重点关注了 HUD 在民航业中的作用。目的是简要介绍 HUD 的历史,总结基本设计,描述 HUD 在当今民航中的作用,并从人为因素的角度介绍 HUD。这包括描述人类信息处理行为和人类与仪器扫描技术相关的空间定向障碍以及最常见的感官错觉。还总结了不同飞行阶段的 HUD 符号。一些主要信息来源是 Richard L. Newman 的著作《平视显示器:设计前进之路》(1995 年)和 Stoke 的《显示技术》(1990 年)。主要结论是 HUD 有助于在高负荷飞行阶段(如起飞、进近和着陆)进行仪器扫描,从而提高态势感知能力、飞行精度和飞行安全性。它还为航空公司提供了一种经济有效的替代方案,以实现低能见度运营。
1 Sims R.、R. Schaeffer、F. Creutzig、X. Cruz-Núñez、M. D’Agosto、D. Dimitriu、M. J. Figueroa Meza、L. Fulton、S. Kobayashi、O. Lah、A. McKinnon、P. Newman、M. Ouyang、J. J. Schauer、D. Sperling 和 G. Tiwari,2014 年:《交通》。刊于:《气候变化 2014:缓解气候变化》。第三工作组对政府间气候变化专门委员会第五次评估报告的贡献 [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel 和 J.C. Minx (eds.)]。剑桥大学出版社,英国剑桥和美国纽约。https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_chapter8.pdf
Stuart A. Newman * 纽约医学院,纽约瓦尔哈拉 10595 美国 ____________________________________________________________________________________ 摘要 本文使用发育生物学和认知领域的例子,详细研究了计算和动态系统模型对生物体的适用性。发育形态发生取决于发育组织固有的物质特性,这是一种非计算方式,但细胞分化利用染色质可修改的记忆库和类似程序的函数调用,通过后生动物独有的发育基因共表达系统,具有准计算基础。多吸引子动力学模型被认为不适用于发展的整体特性,并且有人认为,与计算主义一样,动态主义同样不适合解释认知现象。有人提议将大脑和其他神经组织视为具有固有属性的新型可兴奋物质,从而能够增强整个生命之树中基于细胞的基础认知能力。
Ana Mendez and Rajeev Jayavant Bill and Sue Miklos Fund G & P Miller Feline Health Center Fund Mark Miller Miriam Miller Estate Diana Muller Gary A. Munoz Margaret Murphy Estate Maud and Burton Goldfield Family Foundation Myers Hunter Charitable Foundation Paul and Susan Nagata Joanne Nicholson Jennifer Nitrio NMS Property Services Corporation John Noll and Kathrin Stamp海伦·诺斯(Helen North-Root)博士Mrs. Muriel H. C. Ong Kim Ooi and Paul Neumeyer Kevin M. Ow-Wing Jerry Pacheco Jerold Pearson Fund Laurel Place Bill Porter and Kirsten Greene Jennifer Prieto Prometheus Life / Charles and Phyllis Newman Kevin Ray and Ronald Caple Roy E. Hanson Jr. Mfg.克莱尔·鲁道夫(Claire Rudolph
我们从本年开始,通过一系列计划,展示了研究的潜力,有可能带来医疗服务的重大进展。理查德·安德森(Richard Andersen)的团队正在开发脑机界面,使人们能够通过控制软件和机器人技术来克服身体瘫痪。Dianne Newman正在研究一种抗生素耐药细菌,这是伤口感染的常见原因,并且正在通过破坏其代谢来对抗这种病原体的新方法取得重大进展。安德烈·霍尔兹(AndréHoelz)的实验室正在研究核孔复合物(核孔复合体),这是每个细胞的组成部分,作为保护其遗传信息的“守门人”,以探讨如何更好地了解其功能可能导致新的疾病疗法。Sarkis Mazmanian将讨论他的团队发现肠道微生物组与自闭症之间的联系,并根据这项工作向我们介绍了一项试点研究,该研究表明了减轻测试对象的焦虑和烦躁的希望。
撰稿人 Thomas S. Axworthy、Andrew Balfour、Yaroslav Baran、James Baxter、Daniel Béland、Derek H. Burney、Catherine Cano、Stéphanie Chouinard、Margaret Clarke、David Coletto、Rachel Curran、Paul Deegan、John Delacourt、Susan Delacourt、Graham Fraser、Dan Gagnier、Helaina Gaspard、Martin Goldfarb、Sarah Goldfeder、Patrick Gossage、Frank Graves、David Johnston、Jeremy Kinsman、Shachi Kurl、Philippe Lagassé、Brad Lavigne、Jeremy Leonard、Kevin Lynch、Leslie MacKinnon、Peter Mansbridge、Carissima Mathen、Elizabeth May、Velma McColl、Elizabeth Moody McIninch、David McLaughlin、David Mitchell、Don Newman、Geoff Norquay、Fen Osler-Hampson、Kevin Page、André Pratte、Lee Richardson、Colin Robertson、Robin V. Sears、Vianne Timmons、Brian Topp、Lori Turnbull、Jaime Watt、Anthony Wilson-Smith、Dan Woynillowicz
参与指导委员会成员: Mac Balacano (Bell) Debabrata Das (Rogers) Debbie Fitzgerald (CableLabs) Mody Gaye (SNE 的 Vidéotron 代表) Doug Johnson (CTA) Matthew Newman (Technicolor) Augustine Orumwense (NRCan) Damien O'Sullivan (CommScope) Cynthia Rathwell (Shaw) Lorenza DeTeresa (STB 的 Vidéotron 代表) Ian Schroeder (STB 的 DISH 代表) Erick Wenzel (Cogeco) 其他参与者: Ann Blasioli (Bell) Paul Hudson (CableLabs 律师) Tom Kelleher (CommScope) Tanya Knops (Shaw) Julien Lavoie (CTA 顾问) Anthony Mutiso (Shaw) Fitzgerald 女士代表 Ms. 于下午 2:03 宣布会议开始。拉斯韦尔。提醒各方,本次会议将按照 CEEVA 协议中通过的《竞争法咨询声明》进行,包括各方不会讨论定价或其他竞争问题。委员会批准了主席提交的 2020 年 6 月 16 日会议记录。
市长 Susan Golding 市议会 Harry Mathis Barbara Warden Ron Roberts Valerie Stallings Christine Kehoe Judy McCarty George Stevens Juan Vargas 市律师 John W. Witt 市长 Jack McGrory 规划委员会 Scott Bernet,主席 Karen McElliott,副主席 Lynn Benn Andrea Skorepa Christopher Neils Frisco White Verna Quin 规划部门 Ernest Freeman,AICP,规划总监 George Arimes,助理规划总监 Jeff Washington,土地使用和设施副总监 Betsy McCullough,AICP,首席规划师 Kerry Varga,AICP,高级规划师/项目经理 Jim Atkins,平面设计师 Sam Riordan,平面设计师 Byron Frohn,高级绘图助理 Theresa Newman,文字处理操作员 Ronald St. Germain,编辑/校对 Ron Shely,印刷操作员 太平洋海滩社区规划委员会 成员范围 任期 1991 – 1994
1969 年 10 月 3 日,两台相距遥远的计算机首次通过互联网“对话”。两台计算机(一台位于加州大学洛杉矶分校,另一台位于斯坦福研究所)通过 350 英里的租用电话线连接,尝试传输最简单的信息:单词“login”每次传输一个字母。“L”和“O”传输完美。当传输“G”时,斯坦福研究所的计算机崩溃了。尽管崩溃了,但一个主要障碍已被清除,两台计算机实际上已成功传输了一条有意义的信息,即使不是计划中的信息;加州大学洛杉矶分校的计算机以其自己的语音方式向斯坦福研究所的计算机说“你好”。第一个创新的计算机网络(尽管很小)现已投入运行。几乎可以肯定地说,互联网是二十世纪五大发明之一,与电视、飞机、原子能和太空探索齐名。然而,与上述几项发明不同,互联网并非起源于十九世纪。直到 1940 年,即使是像儒勒·凡尔纳那样的想象力也无法预见到,物理学家和心理学家在第二次世界大战中的合作,会在三十年后引发一场新的通信革命。即使是 AT&T、IBM、通用电气等顶级实验室,在面临一组可以通过复杂的线路同时通话的计算机时,也只能想象出一种依靠中央办公室交换方法通过一条电话线进行计算机间通信的机制。更进一步的设想来自其他一些机构和公司,最重要的是,在这些机构和公司工作的个人。虽然人们可以将 1969 年 10 月的传输视为一个开端,但对于之前几十年从事通信和人工智能工作的研究人员来说,这是一个有着悠久而复杂根源的事件。本文将从二战语音通信实验室的起源追溯这些开端,并试图证明一些天才人物的概念飞跃以及他们的辛勤工作和生产技能如何使得我们每天收到的电子邮件成为可能。虽然很难确定像发明这样模糊的东西,但第一个网络并不难识别。洛杉矶的计算机通过一个称为 ARPANET 的微型分组交换网络向斯坦福的计算机说“你好”,ARPANET 以美国国防部高级研究计划局的名字命名。博尔特·贝拉内克和纽曼是 ARPANET 的创建者,并管理了 20 年,他们认为 ARPANET 的成功有以下几个因素:靠近两所知名大学、只聘用最优秀的人才以及美国政府在人造卫星问世后大力支持研究的政策。1948 年,理查德·博尔特、罗伯特·纽曼和我和我在麻省理工学院的支持下,成立了声学咨询公司 Bolt Beranek and Newman (BBN),当时是一家合伙企业。当时我们并不知道,我们为互联网的发展奠定了基础,互联网的诞生需要三个概念创新——人机系统或共生、分时和分组交换。在接下来的十五年里,BBN 将汇集能够构想这三个概念并使其发挥作用的人才。回想起来,对于不懂计算机的非专业人士来说,这三个概念中最能引起共鸣的似乎是“人机共生”,这是一个开创性的概念,主要由 JCR Licklider 阐述。他设想使用当时在主要行业中很常见的大型计算机
患有情感和行为障碍(EBD)的学生代表美国5.45%的残疾青年(国家教育统计中心[NCES],2022年),并经历了许多负面的短期和长期结果。具体来说,具有EBD的学生表现出不适当的行为,学术问题和人际关系差(Landrum等,2003),这会导致班级失败并以比其他残疾类别中的同龄人和学生更高的速度辍学(Cipriano et al。 2011)。因此,他们在家庭和学校环境中面临着与老师,同伴,父母和兄弟姐妹发生冲突的逆境(Kauffman&Landrum,2009; Menzies等,2009; Walker等,2004)。因此,高中后的结果很差。例如,许多患有EBD的青年在高中毕业后没有从事任何教育活动,而那些学分的学分比其他任何残疾类别中的学生都少(Cipriano等,2018; Newman等,2011)。此外,患有EBD的学生比通常发展同龄人的学生更有可能经历失业,滥用药物,监禁和离婚(Offerman等人,2022年)。很明显,在学校需要中断这种负面轨迹的干预措施。