首席主管Ann-Dorthe Zwisler,博士,心脏病,预防,康复和姑息治疗教授,丹麦大学康复和姑息治疗中心,丹麦康复和姑息治疗中心,丹麦康复中心,南部丹麦大学丹麦大学主管Jørgenknererebneurireb nierelbbbbbbbbbbbbbbbbba nerielk nierelal nieralit,dmsen,dmsen,dmsen,dmsen,dmsen,dmsen,dmsen,dmsen,dmsen,dmsen,dimelsen,dmed, Senior Consultant, Hammel Neurocenter, Institute for Clinical Medicine, Aarhus University Lars Hermann Tang, PhD Associate Professor in physical activity and rehabilitation, The PROgrez research unit, Department of Physiotherapy and Occupational Therapy, Næstved-Slagelse-Ringsted Hospitals, The Department of Regional Health Research, University of Southern Denmark Assessment committee Carsten Bogh Juhl, PhD, Associate Professor, The卫生科学系运动科学和临床生物力学系,丹麦丹麦大学肌肉骨骼功能和理疗研究部Revalidatie,Hilversum,荷兰
8.25Unnurþorsteinsdóttir的主题演讲,Decode遗传学研究副总裁,冰岛大学卫生科学学院院长(由Kirkeby介绍),由Anders Etzerodt介绍,由生物医学授予的咖啡馆和FROUTENS NIE和FROFIER副教授Anders Etzerodt,Anders Etzerodt,副教授,NII和FROUTER NIE和FROUTER NIE和FROUTER NIE和FROUTER NIE和FROFIE最低)Per Kirkeby,湖边演讲剧院10.35第一轮湖畔演讲剧院,解剖学(建造。1231),公共医学礼堂(建造1262/101),建筑物1264(209和310)和Bartholin(Build。Guild。gured.1241) 11.55 Break with lunch and networking 12.40 Keynote lecture by Jonas Egebart, Director General of the Danish Health Authority (in Per Kirkeby) Introduced by Anders Etzerodt, Associate professor, Department of Biomedicine, Aarhus University 13.35 Second round of sessions The Lakeside Lecture Theatres, Anatomy (build.1231),公共医学礼堂(建造1262/101),建筑物1264(209和310)和Bartholin(Build。Guild。gured.1241)14.55咖啡,蛋糕,稍后再见,这一天在不同位置结束
一个值得注意的例外是美国国家航空航天局 (NASA),该局于 1995 年针对高速民用运输机发布了“以机组人员为中心的驾驶舱设计理念”(Palmer 等人1995)。NASA 试图通过开发一个可供工程师和研究人员使用的框架来提供一套指导设计原则,以帮助在整个设计过程中将注意力集中在机组人员身上(见图 2)。虽然 NASA 的框架并非旨在代表任何特定组织内公认的设计流程,但它旨在描述驾驶舱设计中普遍接受的设计实践。然而,尽管如此,它并没有得到广泛使用。它还在其高级描述中忽略了明确的用户需求。本文认为,用户需求与技术和功能需求同样重要,因为未能满足目标用户群的需求和期望将影响产品/系统的成功(Shackel,1984,1991;Nielsen,1993)。此时,分析师应该开始考虑制定特定于上下文的可用性标准,以便评估产品/系统。但是,目前尚无正式标准。因此,我们提出了一个新的可用性评估框架(UEF),旨在强调 HF 在设计生命周期中的作用。
苏丹卡布斯大学 计算机科学系 COMP6113:高级人工智能,2017 年秋季 讲师:Hamza 博士,分机:1407,房间:0020,电子邮件:zidoum@squ.edu.om 上课时间:周一/周三 14:15-15:35 SCI/0005 办公时间:张贴在办公室门口 教科书:神经网络与深度学习。迈克尔·尼尔森。2017 年 8 月 [免费在线书籍] 参考书:AI:一种现代方法,作者 S. Russel 和 P. Norvig,Prentice-Hall。评论:Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton,深度学习。2015 年 5 月 28 日 | 第 521 卷 | 自然 | 436-444 课程描述:本课程的主要目标是让学生熟悉人工智能涵盖的广泛主题,以及对一些特定主题和算法的深度和经验。我们还向学生介绍人工智能的最新发展和研究问题。这种方法力求在了解知识和能够在以后进行更多研究之间取得平衡,并具备一些实践经验,使用尖端人工智能算法来解决实际问题。学习成果:课程结束后,学员有望能够:
在本文中,我们使用两种模式挤压状态的形式主义在最近研究的黑洞气体框架中调查了量子电路的复杂性和纠缠熵,以任意空间上固定的宇宙学平坦的宇宙学Friedmann-Lema- Robertson-Robertson-Walkson-Walks-Walker-Walker背景时间为背景时间。我们通过遵循两种不同的处方,即协变矩阵方法和尼尔森的方法来计算各种复杂性度量,并研究这些复杂性的演变。独立地,使用两种模式挤压状态形式主义,我们还计算了r'enyi和von-neumann纠缠熵,这显示了纠缠熵和量子电路复杂性之间的固有连接。我们分别研究了三个不同的空间维度的复杂度度量和纠缠熵的行为,并在三个空间维度中观察到有关规模因子的这些数量演变的各种显着不同特征。此外,我们还研究了平衡温度的潜在行为,其中两个最重要的量,即,复杂性的变化速率与尺度因子和纠缠熵。我们观察到,无论空间尺寸如何,平衡温度在纠缠熵上都取决于。
1. 简介 等离子体动力学建模通常涉及在精细网格上使用经典场进行操作。这需要处理大量数据,尤其是在动力学模型中,而动力学模型以计算成本高昂而闻名。量子计算 (QC) 有可能通过利用量子叠加和纠缠显著加快动力学模拟速度(参见 Nielsen & Chuang 2010 )。然而,只有当模拟等离子体动力学的量子电路深度与系统大小(网格单元数)成有利的(多对数)比例时,量子加速才有可能。实现这种有效的编码具有挑战性,并且对于大多数具有实际意义的等离子体系统来说仍然是一个悬而未决的问题。在这里,我们探讨了一种有效的量子算法的可能性,用于模拟 Vlasov 等离子体中的线性振荡和波(参见 Stix 1992 )。该领域的先前研究主要集中在初始值问题中对空间单色波或保守波进行建模(参见 Engel、Smith 和 Parker 2019;Ameri 等人 2023;Toyoizumi、Yamamoto 和 Hoshino 2023)。然而,典型的实际应用(例如,对于磁约束聚变)需要对非均匀耗散波进行建模
邀请凯撒,波恩德德国,杰森·凯尔博士,杰森·克尔博士,20024年3月,波恩德德国大学,德国,托比亚斯·罗莎博士,多伦多·坎达多伦多大学,多伦多坎达大学,格雷厄姆·科林格里奇,2024年2月,2024年2月2月2023 VRC,U PENN,费城PA,Claire H. Mitchell博士,2023年1月Weizmann Institute,Rohovot以色列,Ilan Iampl博士,2022年12月ELSC,ELSC,ELSC,耶路撒冷以色列,Yoav Adam Dec 2022 2022 Israeli Sfn,Eliat laviv deciv deciv deciv deciv deciv decement tal deciv decantiv decyeriv法国,Alain Destexhe博士,2022年10月,SFN Ferret会议,加利福尼亚州圣地亚哥,克里斯蒂娜·尼尔森博士,2022年11月,纽卡斯尔英国纽卡斯尔大学,Abhishek Banerjee博士,2021年7月18日,高级成像方法工作室,UC Berkeley,UC Berkeley,UC Berkeley,Holly Aaron Aaron Aaron Aaron Aron Aron Aron aaron Div> 2021
摘要我们表明,对于重力异常的二维理论而言,纠缠的标准概念并未定义,因为它们不接受希尔伯特空间的局部张量分支到局部希尔伯特空间中。定性地,如果有不同数量的状态在两个相反的方向上传播,则模块化流量不能在有限的区域始终如一和单位作用。我们通过将其分解为两个观察来确切化:首先,二维形式的保形场理论在空间上只有在没有异常的情况下,才能在空间上进行一致的量化。第二,局部张力分解始终导致定义一致,统一,能量的边界条件。作为推论,我们建立了对所有二维统一局部量子界理论的尼尔森 - 尼诺亚定理的概括:除非其引力静脉消失,否则在二维中没有连续的量子界面理论。我们还表明,结论可以通过减小的四个非趋势签名来推广到六个维度。我们主张这些点可用于理论上重新解释引力异常量子信息,作为对量子信息定位的基本障碍。
摘要:根据 Nielsen 及其合作者的开创性工作,合适算子空间的几何实现中最小测地线的长度提供了操作量子复杂性的度量。与基于将所需操作构建为乘积所需的最少门数的原始复杂性概念相比,这种几何方法相当于一个更具体和可计算的定义,但在具有高维希尔伯特空间的系统中,它的评估并不简单。通过考虑与由系统中少量相关算子生成的合适有限维群相关的几何,可以更轻松地评估几何公式。通过这种方式,该方法特别应用于谐振子,这也是本文感兴趣的。然而,群论中微妙且以前未被认识到的问题可能会导致无法预见的复杂情况,从而促使人们提出一种新的公式,该公式在大多数所需步骤中仍处于底层李代数的水平。因此,可以在低维环境中发现关于复杂性的新见解,并有可能系统地扩展到更高维度以及相互作用。具体示例包括与谐振子、倒谐振子和耦合谐振子相关的各种目标幺正算子的量子复杂性。该方法的普遍性通过应用于具有三次项的非谐振子来证明。
本研究的部分资金由代顿地区研究生院 (DAGSI) 和空军研究实验室、传感器理事会、光电研究分部 (AFRL/SNJM) 提供。我要由衷感谢我的家人、朋友和莱特州立大学的同事在我攻读博士期间的支持。特别是,我要感谢以下人员,没有他们,本研究不可能完成:我的导师 Narayanan 博士,对我充满信心,鼓励我在遇到困难时坚持下去;Hill、Skipper、Litko 和 McManamon 博士抽出时间担任我的委员会成员并提出建设性批评;AFRL/SNJM 的 Matthew Dierking、Bob Feldmann、Larry Barnes 和 John Schmoll 对本研究的赞助; AFRL/SNJM 的 Timothy Meade 真的竭尽全力为我提供推动研究所需的一切;Brian Ewert 中校和Michael Nielsen 抽出时间,向我传授他们作为飞行员的专业知识;AFRL/HEPG 的 Bob Esken 不知疲倦地帮助我完成这个项目的最后阶段 — — 他的付出让我的成果比没有他时更有价值;Richard (Andy) McKinley、Narashima (Seshu) Edala 和 Mike Young 提供他们的建模专业知识来帮助我进行分析;最后,但当然也是最重要的,我的丈夫 Paul Muller,他在我的整个学术生涯中都包容我,每当我怀疑自己时,他总是安慰我。
