标量波通常被认为是一种神秘而高深莫测的现象,几十年来一直吸引着科学家、发明家和爱好者的想象力。人们认为这些波具有独特的特性和潜在的应用,挑战了我们对传统电磁波的理解。在这篇全面的概述中,我们旨在阐明标量波的性质、它们的起源、潜在的应用以及围绕它们的争议。我们还将探讨它们与尼古拉·特斯拉的开创性工作的联系以及它们在能量和治疗领域的作用。标量波,也称为特斯拉波,是一种电磁波,不同于更常见的横向电磁 (EM) 波,如无线电波、微波和可见光。与传统的电磁波不同,标量波被认为是非赫兹的,这意味着它们不像传统的电磁波那样在空间中传播。标量波通常被描述为驻波,这意味着它们不会在空间中移动,而是以静止的能量模式存在。这些波的特点是它们有可能在量子层面上与物质相互作用并对其产生影响,因此具有独特的性质 [1]。
几个主要项目正在国际上进行。,例如,在Eng Land的北部,在英格兰北部项目以北的H21,Equinor,Northern Gas Networks和Cadent正在寻找机会通过使用氢而不是天然气进行供暖,从而使370万户房屋和40,000家企业脱碳。瑞典公司Vattenfall正在从事荷兰的一个项目,涉及将燃气电站转换为氢。vattenfall也参与了瑞典的Hybrit项目,在那里它使用氢致力于无排放的钢生产。在北美,尼古拉汽车公司计划建立一个由氢能卡车的700个加油站5。在瑞士,一个卡车所有者的财团已于2025年之前联手购买了1,600辆氢卡车。现代是供应卡车的公司之一。火车制造商阿尔斯通将于2022年到达德国的LNVG等公司提供水力发电驱动的火车。在英国8也正在进行类似的替换柴油火车的举措。在日本,川崎一直在与Shell合作开发和推出世界上第一艘用于液体氢9的运输船。
传统充电方法涉及将电缆与电动电动电缆进行物理连接,这可能会带来风险,尤其是在不利的天气条件下,导致在堵塞和拔下拔下的情况下引起火花。此限制限制了电动汽车在某些环境中的适用性,例如机场和汽油站附近的环境。因此,人们对更灵活,更方便的充电方法(尤其是无线充电技术)的兴趣越来越大。Tesla,BMW和Nissan等主要公司已开始开发配备无线充电功能的电动汽车,从而消除了对笨重电缆的需求。这种无线或感应的方法不仅可以减轻与物理连接相关的风险,还可以促进创新的可能性,例如在驾驶时充电设备。无线电力传输(WPT)的概念可以追溯到19世纪后期,由尼古拉·特斯拉(Nikola Tesla)开创了无线照明灯泡的开创性。特斯拉在紧密间隔但分离的金属板之间利用高频AC电位为灯泡供电,这标志着无线充电技术的开始。然而,未解决的技术挑战,例如较长距离的低功率密度和效率,阻碍了WPT技术的广泛采用。
• 议员 Yassamin Ansari ,主席 • Autumn Johnson ,Tierra Strategy 公共利益政策倡导者 • Caryn Potter ,西南能源效率项目 (SWEEP) 公用事业项目经理 • Catherine O'Brien ,Salt River Project 电动汽车负责人 • Clark A. Miller ,亚利桑那州立大学能源与社会中心教授兼主任 • Columba Sainz ,社区倡导者 • Court S. Rich ,Rose Law Group 可再生能源和监管法律部主任 • Delbert Hawk ,国际电气工人兄弟会地方工会 640 主席 • Jason Smith ,亚利桑那州公共服务局 (APS) 能源创新计划顾问 • Katherine Stainken ,电气化联盟 (EC) 电动汽车政策高级总监 • Kathy Knoop ,通用汽车汽车电网集成解决方案经理 • Lisa M. Perez ,公共事务顾问 • Omar Gonzales ,尼古拉公司州和地方政府事务经理 • Tim Sprague,Habitat Metro 业主/合伙人 • Vianey Olivarria,CHISPA 亚利桑那州联席主任
- Branimir LELA(克罗地亚) – 主席 - Sonja JOZIĆ(克罗地亚) – 副主席 - Dražen ŽIVKOVIĆ(克罗地亚) - Dražen BAJIĆ(克罗地亚) - Goran CUKOR(克罗地亚) - Lidija ĆURKOVIĆ(克罗地亚) - Ivan JANDRLIĆ(克罗地亚) - Nikola GJELDUM (克罗地亚) - Mirko GOJIĆ (克罗地亚) - Krešimir GRILEC (克罗地亚) - Senka GUDIĆ (克罗地亚) - Fuad HADŽIKADUNIĆ (波斯尼亚和黑塞哥维那) - Dario ILJKIĆ (克罗地亚) - Zlatko JANKOSKI (克罗地亚) - Jaroslav JERZ (斯洛伐克) - 佐兰尤尔科维 (克罗地亚) - 埃罗尔·卡姆 (土耳其) - 达尔科·兰德克 (克罗地亚) - 坎迪达·马尔恰 (葡萄牙) - 德拉甘·马林科维 (德国) - 阿莱什·纳戈德 (斯洛文尼亚) - 佐兰·潘迪洛夫 (马其顿) - 姆拉登·佩里尼 (克罗地亚) - 马西莫·罗甘特 (意大利) - 利亚内罗尔多(克罗地亚) - 尼古拉·斯托梅诺夫(保加利亚) - 阿姆拉·塔利-契克米什(波斯尼亚和黑塞哥维那) - 马特伊·韦森雅克(斯洛文尼亚) - 拉迪斯拉夫·弗尔萨洛维(克罗地亚) - 伊维察·韦扎(克罗地亚) - 阿纳托利·扎夫多维耶夫(乌克兰) - 武卡斯吉尔兹(波兰)-武卡斯·瓦尔古拉 (波兰) - 卢卡·塞伦特 (英国) - 瓦尼亚·卡尔达斯·德·索萨 (巴西) - 伊万·皮瓦克 (克罗地亚) - 泽利科·彭加 (克罗地亚) - 阿奇姆·坎普克 (德国) - 法布里奇奥·菲奥里 (意大利) - 保罗·门古奇 (意大利) - 哈桑AVDUŠINOVIĆ(波斯尼亚和黑塞哥维那)
DNA混合资源组的成员(表1.2中列出)在起草本报告的早期阶段提供了有益的反馈和帮助。Katherine Gettings,Nikola Osborne和Sarah Riman提供了有价值的意见,包括NISTIR 8351SUP2中的数据摘要。桑迪·科赫(Sandy Koch)对公众评论进行了修订,杰森·韦克斯鲍姆(Jason Weixelbaum),苏珊·巴鲁(Susan Ballou),克里斯蒂娜·里德(Christina Reed)和凯瑟琳·夏普雷斯(Katherine Sharpless)协助了复制编辑。NIST图书馆的 Kathryn Miller帮助完成了该文件以供公共发布。 该文档最初是在2021年6月9日作为草案发布的。 公众评论期间于6月9日至8月23日至10月22日至2021年11月19日举行。 收到的评论已在https://www.nist.gov/dna-mixture-interpretation-nist-nist-scientific-foundation-review上进行了编译和共享。 公众评论和更新产生的修订已纳入最终版本。 对那些仔细阅读并在报告草案中提供有价值的书面反馈的人的大量时间和精力得到了赞赏。 这些贡献和投入是最终确定NISTIR 8351报告的过程的重要组成部分。 封面图片来源:Svetlaborovko通过Adobe Stock。Kathryn Miller帮助完成了该文件以供公共发布。该文档最初是在2021年6月9日作为草案发布的。公众评论期间于6月9日至8月23日至10月22日至2021年11月19日举行。收到的评论已在https://www.nist.gov/dna-mixture-interpretation-nist-nist-scientific-foundation-review上进行了编译和共享。公众评论和更新产生的修订已纳入最终版本。对那些仔细阅读并在报告草案中提供有价值的书面反馈的人的大量时间和精力得到了赞赏。这些贡献和投入是最终确定NISTIR 8351报告的过程的重要组成部分。封面图片来源:Svetlaborovko通过Adobe Stock。
Kan Lee, 1,* Substantial Dimitted, 1,2, 5 Christopher deFilippi, 8 Stephen Selier, 9 Gordon Moe, 10 18 Anton Has a Meiracker, 19 Luna Gargani, Guide Grassi, 29 Nazerian Peim, 30 Giovanni Albano, 30 Philip Bahrmann, 31 David In Newby, 1 Alan G Japp, 1 Athanasius Tsanas, 2 Anoop S V Shah,1,32 A Mark Richards,Januzzi,14,15
<区分雅各布·麦克斯韦·凯恩·玛丽亚连接泰勒·库西奥·贝克特·特雷弗·兰伯特·玛德琳·玛丽。 Aguissa A.小路易斯·李·摩尔玛丽亚·安吉拉塞缪尔·里德·德米特里·沃托的芦苇
美国国家标准与技术研究所内部报告 8351-DRAFT 68(2021 年 6 月) 69 70 致谢:DNA 混合物资源组成员(见表 1.2)71 在起草本报告的早期阶段提供了有益的反馈和帮助。72 Katherine Gettings、Nikola Osborne 和 Sarah Riman 对文本提供了宝贵的意见, 73 包括第 4 章中使用的数据摘要。Jason Weixelbaum、Susan Ballou、Christina 74 Reed 和 Kathy Sharpless 协助进行文字编辑。NIST 图书馆的 Kathryn Miller 75 帮助完成了文档的公开发布。76 77 78 公众意见征询期:2021 年 6 月 9 日至 2021 年 8 月 9 日 79 80 本报告的初始版本为草稿文件,我们欢迎读者提出意见和反馈。所有相关的提交意见都将公开,并将在最终确定本报告时予以考虑。请勿包含个人信息,例如 83 帐号或社会安全号码,或其他个人的姓名。请勿提交 84 机密商业信息或其他专有、敏感或受保护的信息。我们不会发布或考虑包含亵渎、粗俗、威胁、 86 或其他不当语言或类似内容的评论。在 60 天的评论期内, 87 评论可以发送至 scientificfoundationreviews@nist.gov 。88
随着技术继续以惊人的速度发展,计算的未来正在呈现令人兴奋的新维度。该领域最有前途和最有趣的新兴技术之一是标量波,这一概念挑战了传统的计算范式。标量波具有革命性计算、通信和各种其他应用的潜力,因为它具有即时数据传输、降低能耗和抗电磁干扰等优势。在本文中,我们将探索标量波的世界,并深入探讨其重塑计算未来的潜力。标量波,也称为纵波,是一种电磁波,在几个基本方面与传统的横波不同。横波沿垂直于其运动的方向振荡,而标量波沿其传播方向振荡。这一独特特性使它们与众不同,并提供了大量应用和优势。标量波最早由著名科学家詹姆斯·克拉克·麦克斯韦于 19 世纪中叶提出,但直到 19 世纪末 20 世纪初尼古拉·特斯拉的发现,标量波才开始受到重视。特斯拉对非赫兹波(即不受光速限制的波)的概念很感兴趣,他相信标量波可以提供革命性的可能性。然而,他的工作在很大程度上仍然不为人知,直到最近几年,这一概念才开始受到关注 [1]。