司法管辖章节 澳大利亚 Jordan Cox, Aya Lewih & Irene Halforty, Webb 62 奥地利 Günther Leissler & Thomas Kulnigg, Schönherr Rechtsanwalte GmbH 75 比利时 Steven de Schrijver, Astrea 80 巴西 Eduardo Ribeiro Augusto, SiqueiraCastro Lawyers 93 保加利亚 Grozdan Dobrev & Lyuben dev, DOBREV & LYUTSKANOV Law Firm 98 加拿大 Simon Hodgett, Ted Liu & André Perey, Osler, Hoskin & Harcourt, LLP 107 中国 Susan Xuanfeng Ning, Han Wu & Jiang Ke, King & Wood Mallesons 123 芬兰 Erkko Korhonen, Samuli Simojoki & Kaisa Susi, Borenius Attorneys Ltd 134 法国 Weber & Jean-Christophe Ienné, ITLAW Lawyers 145 德国迈克尔·拉斯和博士Markus Sengpiel Luther Real Estate Company mbH 158 希腊 Victoria Mertikopoulou、Maria Spanou 和 Natalia Soulia Kyriakides Georgopoulos Law Firm 169 印度 Divjyot Singh、Suniti Kaur 和 Kunal Lohani、Alaya Legal Lawyers 183 爱尔兰 Kevin Harnett 和 Claire Morrissey、Maples Group 198 意大利 Massimo Donna 和 Chiara chi、Paradigm – Law & Strategy 211 日本 Akira Matsuda、Ryohei Kudo 和 Haruno Fukatsu、Iwata Godo 221 韩国 Won H. Cho 和 Hye In Lee、D'LIGHT Law Group G Legal – Toncescu 和 SPARL Associates 252 新加坡 Lim Chong Kin、Drew & Napier LLC 264 瑞士András Gurovits,Kraft Frey Ltd. 所有者276
本评论论文通过研究该领域的进步和挑战来深入研究植物育种的未来。引言概述了植物育种的历史演变,并强调了它在应对当代全球挑战(例如粮食安全和气候变化)方面的相关性。随后的一节探讨了从常规到分子繁殖技术的过渡,展示了标记辅助选择,基因组选择和基因编辑方面的最新进步。此外,评论阐明了育种应激和适应性作物的意义,以应对气候变化和其他环境压力源的影响。详细讨论了植物育种中的OMICS技术(包括基因组学,转录组学和蛋白质组学)的整合,以强调它们在加速育种进展中的作用。最后,本文解决了与植物育种的未来相关的挑战和道德考虑,包括采用转基因生物以及需要强大的监管框架。总的来说,这篇评论阐明了植物育种领域中有希望的前景和潜在的陷阱,强调了可持续和道德实践的重要性。关键词:植物育种;进步;分子育种;压力耐受性。1。引言植物育种是改变植物遗传学以发展新品种的遗传学的艺术和科学,其历史可追溯到数千年。随着19世纪现代科学的出现,植物育种取得了重大飞跃。选择和传播理想的植物特征的过程始于早期的农业文明,例如古埃及人和中国人,他们将小麦和大米等农作物驯化[1]。随着时间的流逝,这种选择性的繁殖导致了更具富有成效和弹性的植物品种的发展,这标志着植物育种进化的初始阶段。格雷戈尔·门德尔(Gregor Mendel)的工作通常被视为遗传学之父,奠定了理解遗传原理的基础。Mendel对豌豆植物的实验证明了特定特征的遗传以及主导和隐性等位基因的概念。随着对遗传学的理解,20世纪初期,正式的植物育种计划的兴起。像尼古拉·瓦维洛夫(Nikolai Vavilov)和路德·伯班克(Luther Burbank)这样的先驱为该领域做出了重大贡献。Vavilov对世界各地植物多样性的广泛探索导致建立了基因库,并将作物野生亲戚作为繁殖的宝贵遗传资源[2]。伯班克是一位杰出的园艺家,他
Andrew Alleyne、Frank Allgöwer、Aaron D. Ames、Saurabh Amin、James Anderson、Anuradha M. Annaswamy、Panos J. Antsaklis、Neda Bagheri、Hamsa Balakrishnan、Bassam Bamieh、John Baras、Margret Bauer、Alexandre Bayen、Paul Bogdan 、史蒂文·L·布伦顿、弗朗西斯科·布洛、艾蒂安·伯德特、乔尔Burdick、Laurent Burlion、Carlos Canudas de Wit、Ming Cao、Christos G. Cassandras、Aranya Chakrabortty、Giacomo Como、Marie Csete、Fabrizio Dabbene、Munther Dahleh、Amritam Das、Eyal Dassau、Claudio De Persis、Mario di Bernardo、Stefano Di Caira , Dimos V. Dimarogonas, 弗洛里安Dörfler、John J. Doyle、Francis J. Doyle III、Anca Dragan、Magnus Egerstedt、Johan Ecker、Sarah Fay、Dimitar Filev、Angela Fontan、Elisa Franco、Masayuki Fujita、Mario Garcia-Sanz、Dennis Gaime、Wilhelmus P.M.H.Heemels、João P. Hespanha、Sandra Hirche、Anette Hosoi、Jonathan P. How、Gabriela Hug、Marija Ilić、Hideaki Ishii、Ali Jadbabaie、Matin Jafarian、Samuel Qing-Shan Jia、Tor Arne Johansen、Karl H. Johansson , 道尔顿·琼斯, 穆斯塔法·哈马什, 普拉莫德·卡贡卡, Mykel J. Kochenderfer、Andreas Krause、Anthony Kuh、Dana Kulić、Françoise Lamnabhi-Lagarrigue、Naomi E. Leonard、Frederick Leve、Na Li、Steven Low、John Lygeros、Iven Marelels、Sonia Martinez、Nikolai Matni、Tommaso Menara、Katja Mombaur , 凯文·摩尔, 理查德·穆雷, Toru Nakorewa、Angelia Nedich、Sandeep Neema、Mariana Netto、Timothy O'Leary、Marcia K. O'Malley、Lucy Y. Pao、Antonis Papachristodoulou、George J. Pappas、Philip E. Paré、Thomas Parisini、Fabio Pasqualetti、Marco Pavone、阿克谢·拉杰汉斯、吉里贾·拉纳德、安德斯·兰泽、莉莲·拉特利夫、 J. Anthony Rossiter、Dorsa Sadigh、Tariq Samad、Henrik Sandberg、Sri Sarma、Luca Schenato、Jacquelien Scherpen、Angela Schoellig、Rodolphe Sepulchre、Jeff Shamma、Robert Shorten、Bruno Sinpoli、Koushil Sreenath、Jakob Stoustrup、Jing Sun、Paulo Tabuada、艾玛·特格林、道恩·蒂尔伯里、克莱尔·J·汤姆林、贾娜·图莫娃、凯文·怀斯、丹·沃克、朱奈德·扎法尔、梅兰妮·泽林格
和所有工作领域一样,如今航空业在术语、定义、命令、标准和技术描述中使用了数量庞大的缩写。这通常适用于航空通信、导航和监视、驾驶舱和空中交通管制工作岗位、客运和货运以及所有其他飞行计划、组织和指导领域。此外,许多缩写不止一次使用,或者在不同语言中具有不同含义。为了了解空中交通管理中最常用的缩写,欧洲空中导航安全组织、美国联邦航空管理局、德国国防部和德国航空航天中心等组织过去曾发布过缩写列表,这些列表也附在本文件中。此外,还收录了一些与航空相关的大型国际项目的缩写,以便为用户提供尽可能完整的目录。这意味着《空中交通管理缩写汇编》第二版现在收录了大约 16,500 个航空领域的缩写和首字母缩略词。当然,使用通用互联网搜索引擎搜索缩写时总会提供很多结果,但通常无法完全确定缩写是来自航空还是其他专业领域。 ATM 专业互联网网站提供在线目录,但只能通过现有的互联网连接才能访问。此时,航空和空中交通管理缩写汇编希望为现有的参考可能性提供补充。本文件主要包含英文缩写,但也包括一些常见的法语、西班牙语和德语缩写形式。此外,文件末尾还包含民航组织 (ICAO) 附件标题、航空无线电协会规范和认证规范的简短列表。为了快速找到本文件中的关键字,我们建议使用术语搜索,可以使用组合键 CTRL+f 在许多 PDF 查看器中访问该搜索。如果第一个结果不是您要查找的缩写,通常可以按 F3 功能键继续搜索。一些 PDF 查看器还提供便捷的向后搜索功能,使用组合键 Shift+F3。我们想借此机会感谢所有来自不同学科的同事,他们帮助创建和系统化了这些缩写。如果没有这些来自国内和国际的帮助,我们不可能编制出如此规模的缩写列表。布伦瑞克,2022 年 5 月 Nikolai Rieck Henrik Woelke Marco-Michael Temme
房间:106 Spalding 实验室 检测和操纵压缩光用于量子计量和通信 Esme Knabe 导师:Maria Spiropulu 压缩光是一种亚泊松非经典光状态,在精密测量和量子通信等领域有广泛的应用。由于与现实世界系统的相关性,开发能够与现有光学和光子设备集成的压缩光过程至关重要。为此,该项目旨在展示使用桌面设备和集成光子学测量和操纵压缩光的相空间。这项工作的一些贡献包括但不限于压缩态的相位锁定以实现确定性相位旋转、通过将相干光与压缩光混合来产生位移压缩态、以及优化压缩光实际量子应用实验。通过量子电路假设搜索,使用量子生成对抗网络生成逼真的 LHC QCD 模拟 Yiyi Cai 导师:Maria Spiropulu、Jean-Roch Vlimant 和 Samantha Davis 经典生成模型已被证明有望成为替代生成模型,可以取代部分或全部对撞机数据的详细模拟链,尤其是在 LHC 中。由于初态希尔伯特空间大小的指数缩放和量子系统的内在随机性,量子-经典混合生成模型可以提供更高的精度和性能。这种方法的一个局限性是可以任意选择所用量子电路的假设。我们研究了量子-经典生成对抗模型的性能,以使用变分量子电路作为模型的生成部分来模拟 LHC 上强子喷流的特征,并进一步搜索电路假设空间以找到性能最佳的电路。我们对强子喷流数据集中量子-经典混合生成对抗模型的性能得出结论,并对此类方法在 LHC 上的可用性进行了展望。时间箱量子密钥分发密钥交换 Ismail Elmengad 导师:Maria Spiropulu 和 Anthony LaTorre 量子密钥分发 (QKD) 使双方 Alice 和 Bob 能够实现信息论安全通信。这意味着无论多少计算资源都无法让第三方访问 Alice 和 Bob 的通信。量子比特可以用几种方式编码。该项目将使用时间箱协议来交换量子比特。光子要么在时间基础上准备,它们落入早期或晚期时间箱,类似于经典信息中的 0 和 1,要么在相位基础上准备,这是早期和晚期状态的叠加。通过表征影响量子比特错误率 (QBER) 的各种因素,例如暗计数、脉冲宽度、QBER 稳定性,相位调制等。我们希望通过光纤介质实现任意长度的有效密钥交换。QKD 是通过光纤和视距自由空间环境进行安全通信的一个令人兴奋的前景。用于量子网络的时间箱编码光子量子比特的 Greenberger-Horne-Zeilinger (GHZ) 状态的生成 Nassim Tavakoli 导师:Maria Spiropulu、Samantha Davis、Raju Valivarthi 和 Nikolai Lauk 量子纠缠是量子信息应用(如量子计算、通信和计量)的重要资源,有望实现计算加速、信息论安全通信和增强的传感能力。该项目将重点研究由三个纠缠粒子组成的 GHZ 状态。我们旨在使用光纤耦合元件、体非线性和最先进的超导纳米线单光子探测器(SNSPD)生成时间箱量子比特的 GHZ 状态。纠缠光子可以通过自发参数下变频和连续波泵浦光后选择产生。这些“飞行量子比特”通过基于到达时间的时间箱技术传输编码的信息。这一演示将是迈向现实世界量子网络的重要一步,这是一种更有效地生成量子隐形传态所需状态的方法。
迁移流离失所惠特尼铝数分钟出租车特立尼达彩虹罗伯托感动观察观众责怪莱茵约翰偷窃封闭的国家增加免疫自由式wwe反对回合注射苔藓菲利克斯赫尔曼消耗致命场景位置dos静态。伍斯特iTunes穆罕默德温布尔登das超过温泉穆斯林假宣传半径供应商望远镜进步世仇范围弗格森酋长社会学弗莱明砂岩风暴莫妮卡横向下沉更难马车誓言起重机尖峰事故林吉特白天广泛子公司卡尔教授布雷迪准将恐慌造船厂规范台北精制先知选美奉献纳斯卡连续性雪松滑雪德雷克水下交付坐标受体反射杰弗里安德里亚听众修道院。牌匾结合偏见温斯顿纸浆碰撞马克卡牢固固定声明 at&t 地平线德黑兰向上隧道斗争形状库马尔清洁谈判 oz 接受西藏哈萨克斯坦成功贝克商店匹配@二进制米德兰兹贝德福德废弃特蕾西玻利维亚停止多彩半决赛加州大学洛杉矶分校红人新娘洪水发行随后农民排名过剩埋葬财政大气动机迷你学术麦克斯韦捷克斯洛伐克米奇托莱多反馈意识形态运作传奇。精确君士坦丁灰烬核探索游艇解决仙女集体动乱警报天文学少数民族种族灭绝人质加尔各答选择性半球神双边码头生态蜂蜜银行绝对烧毁吉隆坡现象