Muhammad Tahir Akhtar,Fabienne Anfosso,Jorge Arenas,Noureddine Atalla,Keith Attenborough,Mike Bahtiarion,Delphine Bard,Hans Bendsen,Hans Bendtsen,Frits van den Berg L. Bronsdon,Lex Brown,Courtney Burroughs,Jean-Pierre Clairbois,Charlotte Clark,LuísBento Coelho,Dominique Collin,Stephen C. Conlon,Joe Cuchieri,Patricia Davis,Patricia Davis,John Laurence dec. ,Hugo Fastl,Thomas Fedtke,Andre Fiebig,Salvador Figueroa,Heinz Martin Fischer,Ian Flindell,Adrian Fuente,Aslak Fyhri,Massimo Garai,David Pelegrin Garcia,Juan Jesus Garcia,Denis Gely,Klaus Genuit,Samir Ny Gerges,Eddy Gerretsen,Berry Gibbs,AnitaGidlöf-Gunnarsson,克里斯蒂安·汉斯克(Christian Hantschk),马库斯·赫希特(Markus Hecht),卡尔·霍普金斯(Carl Hopkins),乔恩·霍贝尔特(JörnHübelt),斯塔坦·赫吉(Staffan Hygge),钟·贡(Jeong Guon Ich),巴特·英格拉尔(Bart Ingelaere),乌尔里希·伊斯曼(Ullrich Ingelaere),乌尔里希·伊斯曼(Ullrich Isermann),萨宾·詹森(Sabine Janssen),迪伦·琼斯(Dylan Jones),曼弗雷德·卡尔滕巴赫(Manfred Kaltenbacher),艾琳·范·坎普(Irene van Kamp) UC Koujoumji,Annette Kruger-Dokter,Patrick Kurtz,Sonoko Kuwano,Soogab Lee,Peter Lercher,Kai Ming Li, Jing Lu, Luigi Maffei, Jeffrey Mahn, Thomas Maly, Toshihito Matsui, Young J. Moon, Mats E Nilsson, Svein Arne Nordby, Mikael Ögren, Jorge Patricio, Eja Pedersen, Rich Peppin, Kerstin Persson-Waye, Markus Petz, Bert Pluymers, Christian Popp, Anna Preis, Guido Previati, Wolfgang Probst, Nicola Prodi, Birgit Rasmussen, Robert Rasmussen, Timothy Van Renterghem, Jens Rindel, Ulrich Saemann, Ulf Sandberg, Beat Schäffer, Werner Scholl, Dirk Schreckenberg, Brigitte Schulte-Fortkamp, Ahmet Selamet, Daniel Shepherd, Malcolm Sim, Christian Simmons, Stephen Stansfeld, Marianna Pérez Abendaño Tecnalia, Wolfgang Unterberger, Berthold Vogelsang, Diemer de Vries、Dittrich Wittekind、Ning Xiang、Ichiro Yamada、Takano Yasushi、Bernd Zeitler
本报告是北欧部长理事会资助的研究项目的主要成果,该项目名为“管理北欧的竞争性相互依赖:混乱时代的北欧供应安全 (NOSAD)”。研究团队位于芬兰国际事务研究所,由 Mikael Wigell 领导。研究团队特别感谢参考小组在整个项目中的积极和建设性参与。参考小组包括 Esben Mulvad Tomsen(丹麦关键供应机构)、Louisa Hjort Poulsen(丹麦关键供应机构)、Ask Paul Lomholt Kemp(丹麦应急管理局)、Henrik Juhl Madsen(丹麦商业管理局)、Andras Marr Poulsen(法罗群岛渔业部)、Wivi-Ann Wagello-Sjölund(芬兰内政部)、Tiia Lohela(芬兰国家应急供应局)、Henri Backman(芬兰经济事务和就业部)、Margrét Halldóra Hallgrímsdóttir(冰岛司法部)、Lisbeth Muhr(挪威贸易、工业和渔业部)、May-Kristin Ensrud(挪威司法和公共安全部)、Malin Wester(瑞典民事应急机构)、Selma Ilijazovic (瑞典民事应急机构)、Jörgen Gyllenblad(瑞典卫生和社会事务部)、Camilla Palmqvist-Hägglund(奥兰政府,奥兰群岛)。我们还要衷心感谢在
穆罕默德·塔希尔·阿赫塔尔、法比恩·安福索、豪尔赫·阿里纳斯、努尔丁·阿塔拉、基思·阿滕伯勒、迈克·巴蒂亚里昂、戴尔芬·巴德、汉斯·本特森、弗里茨·范登伯格、马丁·范登伯格、特鲁斯·伯格、伯纳德·贝里、安妮莉丝·博克斯塔尔、杰拉德·博雷洛、迪克·博特尔杜伦、马克·布林克、桑德拉·布里克斯、罗伯特·L·布朗斯登、莱克斯·布朗、考特尼·巴勒斯让-皮埃尔·克莱尔布瓦、夏洛特·克拉克、路易斯·本托·科埃略、多米尼克·科林、史蒂芬·C·康伦、乔·库基耶里、帕特里夏·戴维斯、约翰·劳伦斯·戴维、弗朗西斯科·D·德尼亚、福特·德鲁、科尼利厄斯·杜兰、纪尧姆·杜蒂利厄、阿德里安·艾格、Tamer Elnady、雨果·法斯特、托马斯·费特克、安德烈·菲比格、萨尔瓦多·菲格罗亚、海因茨·马丁·费舍尔、伊恩·弗林德尔、 Adrian Fuente、Aslak Fyhri、Massimo Garai、David Pelegrin Garcia、Juan Jesus Garcia、Denis Gely、Klaus Genuit、Samir N.Y.格尔格斯、埃迪·格雷森、贝里·吉布斯、安妮塔·吉德洛夫-冈纳森、吕克·古伯特、伊达尔·格兰诺恩、科林·格里姆伍德、凯茜·吉古-卡特、克拉斯·哈格伯格、穆罕默德-阿里·哈姆迪、卡尔-克里斯蒂安·汉奇克、马库斯·赫克特、卡尔·霍普金斯、约恩·胡贝尔特、斯塔凡Hygge、Jeong Guon Ich、Bart Ingelaere、Ullrich Isermann、Sabine詹森、迪伦·琼斯、曼弗雷德·卡尔滕巴赫、艾琳·范·坎普、康健、史蒂芬·基思、罗尼·克拉博、伊冯·德·克鲁泽纳尔、让-吕克·库朱姆吉、安妮特·克鲁格-多克特、帕特里克·库尔茨、桑诺子、Soogab Lee、Peter Lercher、李凯明, 卢静, Luigi Maffei, Jeffrey Mahn, Thomas Maly, Toshihito Matsui, Young J. Moon、Mats E Nilsson、Svein Arne Nordby、Mikael Ögren、Jorge Patricio、Eja Pedersen
https://doi.org/10.55248/gengpi.5.0124.0328 [4] Brynjolfsson,E。,&McAfee,&McAfee,A.(2014)。第二个机器时代:在精彩技术时期的工作,进步和繁荣。WW Norton&Company。 [5] Danaher,J。 (2019)。 自动化和乌托邦:人类在没有工作的世界中繁荣起来。 哈佛大学出版社。 [6] Domingos,P。(2015)。 主算法:对最终学习机器的追求将如何重制我们的世界。 基本书籍。 [7] Venkatapuram,S。S.(2024)。 鲨鱼标记跟踪 - 使用bezier算法推断:增强对迁移模式的理解。 国际研究出版与评论杂志,5(1),4350–4354。 https://doi.org/10.55248/gengpi.5.0124.0327 [8] Etzioni,O。,&Etzioni,A。 (2017)。 将伦理纳入人工智能。 《道德杂志》,21(4),403-418。 [9] Floridi,L.,Cowls,J.,Beltrametti,M.,Chatila,R.,Chazerand,P.,Dignum,V。,...&Schafer,B。 (2018)。 AI4PEOPLE-一个良好的人工智能社会的道德框架:机遇,风险,原则和建议。 思维和机器,28(4),689-707。 [10] Jordan,M。I.和Mitchell,T。M.(2015)。 机器学习:趋势,观点和前景。 Science,349(6245),255-260。 [11] Kaplan,J。和Haenlein,M。(2019)。 Siri,Siri,我手中:谁是土地上最公平的? 关于人工智能的解释,插图和含义。 业务视野,62(1),15-25。WW Norton&Company。[5] Danaher,J。(2019)。自动化和乌托邦:人类在没有工作的世界中繁荣起来。哈佛大学出版社。 [6] Domingos,P。(2015)。 主算法:对最终学习机器的追求将如何重制我们的世界。 基本书籍。 [7] Venkatapuram,S。S.(2024)。 鲨鱼标记跟踪 - 使用bezier算法推断:增强对迁移模式的理解。 国际研究出版与评论杂志,5(1),4350–4354。 https://doi.org/10.55248/gengpi.5.0124.0327 [8] Etzioni,O。,&Etzioni,A。 (2017)。 将伦理纳入人工智能。 《道德杂志》,21(4),403-418。 [9] Floridi,L.,Cowls,J.,Beltrametti,M.,Chatila,R.,Chazerand,P.,Dignum,V。,...&Schafer,B。 (2018)。 AI4PEOPLE-一个良好的人工智能社会的道德框架:机遇,风险,原则和建议。 思维和机器,28(4),689-707。 [10] Jordan,M。I.和Mitchell,T。M.(2015)。 机器学习:趋势,观点和前景。 Science,349(6245),255-260。 [11] Kaplan,J。和Haenlein,M。(2019)。 Siri,Siri,我手中:谁是土地上最公平的? 关于人工智能的解释,插图和含义。 业务视野,62(1),15-25。哈佛大学出版社。[6] Domingos,P。(2015)。主算法:对最终学习机器的追求将如何重制我们的世界。基本书籍。[7] Venkatapuram,S。S.(2024)。鲨鱼标记跟踪 - 使用bezier算法推断:增强对迁移模式的理解。国际研究出版与评论杂志,5(1),4350–4354。https://doi.org/10.55248/gengpi.5.0124.0327 [8] Etzioni,O。,&Etzioni,A。(2017)。将伦理纳入人工智能。《道德杂志》,21(4),403-418。[9] Floridi,L.,Cowls,J.,Beltrametti,M.,Chatila,R.,Chazerand,P.,Dignum,V。,...&Schafer,B。(2018)。AI4PEOPLE-一个良好的人工智能社会的道德框架:机遇,风险,原则和建议。思维和机器,28(4),689-707。[10] Jordan,M。I.和Mitchell,T。M.(2015)。机器学习:趋势,观点和前景。Science,349(6245),255-260。[11] Kaplan,J。和Haenlein,M。(2019)。Siri,Siri,我手中:谁是土地上最公平的? 关于人工智能的解释,插图和含义。 业务视野,62(1),15-25。Siri,Siri,我手中:谁是土地上最公平的?关于人工智能的解释,插图和含义。业务视野,62(1),15-25。[12] Markoff,J.(2015)。爱心恩典的机器:寻求人类和机器人之间的共同点。哈珀·柯林斯(Harper Collins)。[13] McCarthy,J.,Minsky,M。L.,Rochester,N。,&Shannon,C。E.(2006)。1955年8月31日,达特茅斯夏季研究项目的提案。AI杂志,27(4),12-12。 [14] ng,A。 (2016)。 人工智能现在可以做什么也不能做什么。 哈佛商业评论,9(11)。 [15] Nilsson,N。J. (2009)。 寻求人工智能。 剑桥大学出版社。 [16] Russell,S。和Norvig,P。(2016)。 人工智能:一种现代方法。 马来西亚;皮尔逊教育有限公司。 [17] Stone,P.,Brooks,R.,Brynjolfsson,E. 2030年的人工智能和生活。 人工智能一百年研究:2015 - 2016年研究小组的报告。 [18] Suleiman,Y。 (2017)。 人工智能的伦理。 下一步:指数寿命。 BBVA开放的心态。 [19] Tegmark,M。(2017)。 生命3.0:在人工智能时代成为人类。 knopf。 [20] Toby Walsh,S。(2017)。 还活着! 人工智能从逻辑钢琴到杀手机器人。 La Trobe University出版社。AI杂志,27(4),12-12。[14] ng,A。(2016)。人工智能现在可以做什么也不能做什么。哈佛商业评论,9(11)。[15] Nilsson,N。J.(2009)。寻求人工智能。剑桥大学出版社。[16] Russell,S。和Norvig,P。(2016)。人工智能:一种现代方法。马来西亚;皮尔逊教育有限公司。[17] Stone,P.,Brooks,R.,Brynjolfsson,E.2030年的人工智能和生活。人工智能一百年研究:2015 - 2016年研究小组的报告。[18] Suleiman,Y。(2017)。人工智能的伦理。下一步:指数寿命。BBVA开放的心态。[19] Tegmark,M。(2017)。生命3.0:在人工智能时代成为人类。knopf。[20] Toby Walsh,S。(2017)。还活着!人工智能从逻辑钢琴到杀手机器人。La Trobe University出版社。La Trobe University出版社。
隶属关系:(a)路德维希 - 马克西米利人 - 慕尼黑,杜。(b)罗格斯大学,美国新泽西州新不伦瑞克省和美国纽约的Curepsp。(c)加利福尼亚大学,美国旧金山记忆与老化中心。(d)巴塞罗那医院诊所。(E)英国NHS基金会信托基金会伦敦大学学院医院。(F)巴塞罗那费勒的R&D投资组合部门。es。(g)巴塞罗那Ferrer的临床发展部。(H)巴塞罗那Ferrer的医疗部门。参考文献:(1)Agarwal S,Gilbert R.进行性次核瘫痪。[更新2023 3月27日]。in:statpearls [Internet]。宝藏岛(FL):Statpearls Publishing; 2024年1月。可从:https://www.ncbi.nlm.nih.gov/books/nbk526098/; (2)Permanne B,Sand A,Ousson S等。O-Glcnacase抑制剂ASN90是tau和α-突触核蛋白蛋白质病的Mul-timodal药物。ACS Chem Neurosci。2022 Apr 20; 13(8):1296-1314。 doi:10.1021/acschemneuro.2c00057。EPUB 2022 3月31日。PMID:35357812; PMCID:PMC9026285; (3)Selnick HG,Hess JF,Tang C等。 发现MK-8719,这是一种有效的O-Glcnacase抑制剂,是对功的潜在治疗方法。 J Med Chem。 2019; 62(22):10062-10097.DOI:10.1021/acs.jmedchem.9b01090; (4)Balana在Pratt MR。神经退行性疾病中O-Glcnacylation改变的机械作用。 Biochem J. 2021年7月30日; 478(14):2733-2758。 doi:10.1042/bcj20200609。 进行性临床核对核对的临床诊断:运动障碍社会标准。PMID:35357812; PMCID:PMC9026285; (3)Selnick HG,Hess JF,Tang C等。发现MK-8719,这是一种有效的O-Glcnacase抑制剂,是对功的潜在治疗方法。J Med Chem。 2019; 62(22):10062-10097.DOI:10.1021/acs.jmedchem.9b01090; (4)Balana在Pratt MR。神经退行性疾病中O-Glcnacylation改变的机械作用。 Biochem J. 2021年7月30日; 478(14):2733-2758。 doi:10.1042/bcj20200609。 进行性临床核对核对的临床诊断:运动障碍社会标准。J Med Chem。2019; 62(22):10062-10097.DOI:10.1021/acs.jmedchem.9b01090; (4)Balana在Pratt MR。神经退行性疾病中O-Glcnacylation改变的机械作用。Biochem J.2021年7月30日; 478(14):2733-2758。 doi:10.1042/bcj20200609。进行性临床核对核对的临床诊断:运动障碍社会标准。PMID:34297044; PMCID:PMC8840812; (5) Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, Mollenhauer B, Müller U, Nilsson C, Whitwell JL, Arzberger T, Englund E, Gelpi E, Giese A, Irwin DJ, Meissner WG, Pantelyat A, Rajput A, van Swieten JC, Troakes C, Antonini A, Bhatia KP, Bordelon Y, Compta Y, Corvol JC, Colosimo C, Dickson DW, Dodel R, Ferguson L, Grossman M, Kassubek J, Krismer F, Levin J, Lorenzl S, Morris HR, Nestor P, Oertel WH, Poewe W, Rabinovici G, Rowe JB, Schellenberg GD,Seppi K,Van Eimeren T,Wenning GK,Boxer AL,Golbe Li,Litvan I;运动障碍社会认可的PSP研究小组。 MOV DISORD。 2017年6月; 32(6):853-864。 doi:10.1002/mds.26987。 EPUB 2017年5月3日。 PMID:28467028; PMCID:PMC5516529。 ; (6)一项评估FNP-223的疗效,安全性和药代动力学对进行性核上麻痹(PSP)进展缓慢的研究。 clin- clintrials.gov [Internet]。 可用:https://www.clinicaltrials.gov/study/nct06355531。 访问于02/10/2024。PMID:34297044; PMCID:PMC8840812; (5) Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, Mollenhauer B, Müller U, Nilsson C, Whitwell JL, Arzberger T, Englund E, Gelpi E, Giese A, Irwin DJ, Meissner WG, Pantelyat A, Rajput A, van Swieten JC, Troakes C, Antonini A, Bhatia KP, Bordelon Y, Compta Y, Corvol JC, Colosimo C, Dickson DW, Dodel R, Ferguson L, Grossman M, Kassubek J, Krismer F, Levin J, Lorenzl S, Morris HR, Nestor P, Oertel WH, Poewe W, Rabinovici G, Rowe JB, Schellenberg GD,Seppi K,Van Eimeren T,Wenning GK,Boxer AL,Golbe Li,Litvan I;运动障碍社会认可的PSP研究小组。MOV DISORD。 2017年6月; 32(6):853-864。 doi:10.1002/mds.26987。 EPUB 2017年5月3日。 PMID:28467028; PMCID:PMC5516529。 ; (6)一项评估FNP-223的疗效,安全性和药代动力学对进行性核上麻痹(PSP)进展缓慢的研究。 clin- clintrials.gov [Internet]。 可用:https://www.clinicaltrials.gov/study/nct06355531。 访问于02/10/2024。MOV DISORD。2017年6月; 32(6):853-864。 doi:10.1002/mds.26987。EPUB 2017年5月3日。PMID:28467028; PMCID:PMC5516529。; (6)一项评估FNP-223的疗效,安全性和药代动力学对进行性核上麻痹(PSP)进展缓慢的研究。clin- clintrials.gov [Internet]。可用:https://www.clinicaltrials.gov/study/nct06355531。访问于02/10/2024。
气候变化显着和不利影响了全球环境,生物多样性和可持续的人类发展,主要是通过修改全球温度模式,水文循环和诱导酸性(Habib等,2025)。海洋中的主要反应变量(例如,物理,化学和生物学)可以用作气候变化影响的前哨指标。在当代和即将到来的气候变化情景中,预期的水生生物多样性的灭绝率通常大于陆地物种的灭绝率(Huang等,2021)。小规模的鱼纹(SSFS)显着有助于粮食安全,减轻贫困,就业和维持健康的海洋生态系统(Gatta,2022),因此促进了某些可持续发展的发展目标的实现。尽管是全球数百万的主要生计选择,但SSF遇到了与全球化,气候变化和过度融化相关的不确定性和可变性的升级(Nilsson等,2019)。气候变异性通过影响杂种资源,捕捞者的生计以及更改人口和生产价值来对SSF构成重大危险(Mbaye等人,2023年)。沿海地区尤其容易受到全球变暖的有害影响,这主要是在陆地和海洋因素的收敛中。影响可能是海洋,生态或社会经济。海洋变暖有海洋学的意义包括在杂种季节的改变,弯曲位置的变化以及由于波高和湍流风而引起的与海上活动相关的危险(N'Souvi等,2024)。同时,捕捞收入的不可预测性以及即将来临的气候变化造成的潜在生物多样性损失(Pörtner等人,2023年)分别体现了社会经济和生态经济和生态学的反应。气候变化的其他后果包括沿海水温的变化,降水模式,海平面上升,沿海流量和侵蚀的变化,这显着影响的多样性,分布和丰度,随后影响海洋生物生物系统和生态系统,以及n's sherfculations n s shefivies n's''s''s''''souvient''。例如,海平面的上升通过降低薄壁架的生产力和价值来影响沿海景观和社区的生计(N'Souvi等,2024),从而损害了融化操作的安全性和效率(Bertrand等人,2019年)。此外,降水,暴风雨发生和干旱模式的变化影响了水流量,从而影响了沿海地区的物种运动和招募模式以及盐度水平(Trégarot等,2024)。因此,海温的加速升高(Cheng等,2019),盐度(Cheng等,2020),海平面(Kulp and Strauss,2019),酸性(Cattano等,2018)和脱氧(Kwiatkowski等,2020年),MARRINANT在MARRINANT中,MARRINANT在MARRINANT上,一定的物种和偏移分配,一定的物种和境内迁移。 Venegas等人,2023年),丰度降低(McCauley等,2015),以及生产力的转变(Venegas等,2023),通过改变季节性模式和减少的填充效率和减少的填料(france and france and france and france),从而导致社会经济的影响。
人工智能与失业:新见解 摘要:本文使用一个理论模型研究了人工智能对高科技发达国家失业的影响,该模型也得到了实证支持。实证方法采用非线性方法,使用面板阈值和 GMM 系统估计。数据集涵盖 1998 年至 2016 年期间,包括 23 个国家。主要结果表明,人工智能对失业的影响呈非线性,人工智能的加速使用会降低失业率,但仅发生在低通胀水平下。在这种情况下,没有记录到“置换效应”和“替代效应”之间的“转换效应”。否则,人工智能对失业的贡献是中性的。 关键词:人工智能;失业;影响;高科技国家 JEL 代码:F22,O17,C23 1. 简介 近几十年来,鉴于人工智能对失业的影响存在争议,人工智能引起了社会科学的极大兴趣。Pentland 等人。 (2019,第 2 页) 指出,“未来的战略优势取决于利用人工智能(如机器学习、计算机视觉和自主系统)并将其与劳动力相结合以创建共生的人机团队的能力。” 这一概念的现代根源可以追溯到第一次世界大战时期,于 1956 年在达特茅斯学院的一次人工智能会议上首次提出。正如尼尔森 (1984,第 5 页) 所指出的那样,这一过程产生了“不同类别的机器——这些机器可以执行以前只能由人类完成的需要推理、判断和感知的任务。” 目前,人工智能不仅是自动化过程的延续;它还代表了这些过程的顶峰,对劳动力市场有着深远的影响。史蒂文森 (2019) 声称,人工智能的使用通过提高生产力来促进经济增长,从而提高未来收入水平。他还指出,只要人工智能产生的好处能够补偿因工资损失而受到负面影响的工人,这种积极影响就是有效的。所有涉及人工智能的流程都会在短期和长期内决定劳动力需求的强烈变化。在短期内,Frank 等人 (2019 年,第 6531 页) 强调“人工智能和自动化技术的快速发展有可能严重扰乱劳动力市场。”主要问题是不同工作需求的下降和专业地位的丧失比工资损失更重要 (Stevenson,2019 年)。否则,从长远来看,技术变革有望通过新创造的就业机会增强人类技能。事实上,人工智能创造了利用人类技能的新方式。因此,由于对人工智能产生的影响存在不同意见,人们主要担心的是人工智能对失业水平的贡献。
Sophia Weiner,Sauer的Mathias。分析蛋白质组学分析的制备和数据临床蛋白质组学。2022。II。 Sophia Weiner,Sauer,Laia Montolia,Andrea L. Blessed,Nicholas J. Ashton。 Rauramaa,Mikko Hiltunen,Rosa-Neto Pedro,Blennow,Johan Gobom。 上面的洪水蛋白研究对阿尔茨海默氏症连续体的保护: manusscript。 iii。 Sophia Weiner,Mathias Sauer,Brinkmalm,Julius Constantine,Fernandes Fernandes,Becker,Becker,BengtNellgård,Keti Dalla,Douglas Galasko,Henrig Zetterberg,Blennow,Blennow,Johan Gobom。 scrn1:在阿尔茨海默氏症的灾难中可用脑大脑。 阿尔茨海默氏症和痴呆症。 2023。 iv。 蛋白质组学分析明显区分的脑杂交遗传声信号深层亚型。 翻译科学医学。 2025。 V. Imogen J. 定量与介质蛋白相关的接壤中的Pepts颗粒。 manusscript。II。Sophia Weiner,Sauer,Laia Montolia,Andrea L. Blessed,Nicholas J. Ashton。 Rauramaa,Mikko Hiltunen,Rosa-Neto Pedro,Blennow,Johan Gobom。上面的洪水蛋白研究对阿尔茨海默氏症连续体的保护:manusscript。iii。Sophia Weiner,Mathias Sauer,Brinkmalm,Julius Constantine,Fernandes Fernandes,Becker,Becker,BengtNellgård,Keti Dalla,Douglas Galasko,Henrig Zetterberg,Blennow,Blennow,Johan Gobom。scrn1:在阿尔茨海默氏症的灾难中可用脑大脑。阿尔茨海默氏症和痴呆症。2023。iv。蛋白质组学分析明显区分的脑杂交遗传声信号深层亚型。翻译科学医学。2025。V. Imogen J.定量与介质蛋白相关的接壤中的Pepts颗粒。manusscript。乔尔·西伦(Joel Simren),伊莫因斯(Imogen)。 Harro Seelaar,RAC,Robert Laforce,Caroline Graff,Daniela Galimmberti,Rik Vandenberg,Sorbi,Otto,Pasquier's Florence,Simon,Chris R. Butler,Chris R. Butler, Isabelle Le Ber,Elizabeth Finger,Maria Carmela Tartaglia,Mario Masellis,James B. Rowe,Matthis Synofzik,Fermin Moreno,Borroni Barbara,Blenhow,Henrik Zetterberg*,Jonathan D. Rohrer*,Johan Gobom*。JohnRönnholm,Mathias Sauer,Johanna Nilsson,John Van Swieten,Liize C. Jiskoot,Harro Seelaar,Racel St. Valle,Rik Vandenberghe,Mendonça的Alexander,Tiraboschi Pietro,Santana的Isabel,Alexander Gerhard,Johannes Levin,Sorb,Sorb,Sorb,Sorb,Isabelle Le Ber,Elizabeth,Elizabeth,James B. Rowe。 Bernno,Blessings,Blenharow的Bill,Jonathan,D。Rohrer*,Johan Gobom*。
Straub, V.J.、Tsvetkova, M. 和 Yasseri, T. 2023。在执行复杂任务时,协调的成本可能超过协作的收益。集体智慧 2(2)。https://doi.org/10.1177/26339137231156912 Tsvetkova, M. 、Vuculescu, O.、Dinev, P.、Sherson, J. 和 Wagner, C. 2022。异质禀赋下的不平等和公平。PLoS ONE 17(10):e0276864。Tsvetkova, M. , M¨uller*, S., Vuculescu, O., Ham, H., 和 Sergeev, R. 2022.社会比较增加了努力和表现的分散性和可预测性。ACM 人机交互论文集 6(CSCW2):536。Kim*, J.E.和 Tsvetkova, M. 2021。网络游戏中的作弊行为通过观察和受害而传播。网络科学 9(4):425–442。Tsvetkova, M. 2021。声誉对网络合作游戏中不平等的影响。英国皇家学会哲学学报 B 376:20200299。Reiss*, M.V.和 Tsvetkova, M. 2020。从 Facebook 个人资料图片了解教育。新媒体与社会 22(3):550–570。Tsvetkova, M. , Wagner, C., 和 Mao, A.2018。社会群体中不平等的出现:网络结构和制度影响合作博弈中的收益分配。PLoS ONE 13(7):e0200965。Tsvetkova, M. , Yasseri, T., Meyer, E., Pickering, J.B., Engen, V., Walland, P., L¨uders, M., Følstad, A., 和 Bravos, G. 2017.理解人机网络:一项跨学科调查。ACM 计算调查 50(1):12。Garc´ıa-Gavilanes, R.、Møllgaard, A.、Tsvetkova, M. 和 Yasseri, T. 2017。记忆永存:理解数字时代的集体记忆。Science Advances 3(4):e1602368。Tsvetkova, M. 、Garc´ıa-Gavilanes, R.、Floridi, L. 和 Yasseri, T. 2017。即使是优秀的机器人也会打架:以维基百科为例。PLoS ONE 12(2):e0171774。Tsvetkova, M. , Garc´ıa-Gavilanes, R., 和 Yasseri, T. 2016.分歧的动态:大规模时间网络分析揭示了在线协作中的负面互动。科学报告 6:36333。Garc´ıa-Gavilanes, R., Tsvetkova, M. , 和 Yasseri, T. 2016.在线关注的动态和偏见:飞机失事案例。皇家学会开放科学 3:160460。Tsvetkova, M. , Nilsson*, O., ¨ Ohman*, C., Sumpter, L., 和 Sumpter, D. 2016.隔离机制的实验研究。EPJ 数据科学 5:4。Tsvetkova, M. 和 Macy, M.W.2015.反社会行为的社会传染。社会科学 2:36–49。Macy, M.W.和 Tsvetkova, M. 2015.噪声的信号重要性。社会学方法与研究 44(2):306–328。Tsvetkova, M. 和 Macy, M.W.2014。慷慨的社会感染。PLoS ONE 9(2): e87275。Tsvetkova, M. 和 Buskens, V. 2013。平等主义网络在社会博弈中的非对称关系协调。复杂系统进展 16(1):1350005。 van der Lippe, T.、Frey, V. 和 Tsvetkova, M. 2013。家务外包:偏好问题?家庭问题杂志 34(12):1574–1597。Shaw, A.K.、Tsvetkova, M. 和 Daneshvar, R. 2011。八卦对社交网络的影响。复杂性 16(4):39–47。
[1] Harald Köpping Athanasopoulos。2019 年。《月球村和太空 4.0:‘开放概念’是开展太空活动的新方式吗?》太空政策 49(2019 年),101323。[2] Edward Bachelder、David H Klyde、Noah Brickman、Sofia Apreleva 和 Bruce Cogan。2013 年。融合现实以增强飞行测试能力。在 AIAA 大气飞行力学 (AFM) 会议上。5162。[3] Leonie Becker、Tommy Nilsson、Paul Demedeiros 和 Flavie Rometsch。2023 年。增强现实服务于人类在月球上的操作:来自虚拟试验台的见解。在 2023 年 CHI 计算系统人为因素会议的扩展摘要中。1-8。 [4] Loredana Bessone、Francesco Sauro、Matthias Maurer 和 Matthias Piens。2018 年。月球及以外地区实地地质探索的测试技术和操作概念:欧空局 PANGAEA-X 活动。载于欧洲地球物理联合会大会摘要。4013 年。[5] D Budzyń、H Stevenin、Matthias Maurer、F Sauro 和 L Bessone。2018 年。欧空局为月球太空行走模拟制作月球表面地质采样工具原型。载于第 69 届国际宇航大会 (IAC),德国不来梅。[6] Andrea EM Casini、Petra Mittler、Aidan Cowley、Lukas Schlüter、Marthe Faber、Beate Fischer、Melanie von der Wiesche 和 Matthias Maurer。2020 年。欧空局的月球模拟设施开发:LUNA 项目。空间安全工程杂志 7, 4 (2020),510–518。[7] David Coan。2022 年。NEEMO 22 EVA 概述与汇报。技术报告。[8] Brian E Crucian、M Feuerecker、AP Salam、A Rybka、RP Stowe、M Morrels、SK Mehta、H Quiriarte、Roel Quintens、U Thieme 等人。2011 年。ESA-NASA“CHOICE”研究:在南极内陆康科迪亚站过冬,作为太空飞行相关免疫失调的类似物。在第 18 届 IAA 人类进入太空研讨会上。[9] Enrico De Martino、David A Green、Daniel Ciampi de Andrade、Tobias Weber 和 Nolan Herssens。 2023. 模拟低重力环境下的人体运动——弥合太空研究与地面康复之间的差距。神经病学前沿 14 (2023),1062349。[10] Gil Denis、Didier Alary、Xavier Pasco、Nathalie Pisot、Delphine Texier 和 Sandrine Toulza。2020. 从新太空到大太空:商业太空梦想如何变成现实。宇航学报 166 (2020),431–443。[11] Dean B Eppler。1991. 月球表面作业的照明限制。 NASA STI/Recon 技术报告 N 91(1991),23014。[12] Barbara Imhof、Waltraut Hoheneder、Stephen Ransom、René Waclavicek、Bob Davenport、Peter Weiss、Bernard Gardette、Virginie Taillebot、Thibaud Gobert、Diego Urbina 等人。2015 年。月球行走与人机协作任务场景与模拟。在 AIAA SPACE 2015 会议和博览会上。4531。[13] Curtis Iwata、Samantha Infeld、Jennifer M Bracken、Melissa McGuire、Christina McQuirck、Aron Kisdi、Jonathan Murphy、Bjorn Cole 和 Pezhman Zarifian。2015 年。并行工程中心基于模型的系统工程。在 AIAA SPACE 2015 会议和博览会上。4437。[14] Juniper C Jairala、Robert Durkin、Ralph J Marak、Stepahnie A Sipila、Zane A Ney、Scott E Parazynski 和 Arthur H Thomason。2012 年。在 NASA 中性浮力实验室进行 EVA 开发和验证测试。第 42 届国际环境系统会议 (ICES)。[15] Hyeong Yeop Kang、Geonsun Lee、Dae Seok Kang、Ohung Kwon、Jun Yeup Cho、Ho-Jung Choi 和 Jung Hyun Han。2019 年。跳得更远:在失重沉浸式虚拟环境中向前跳跃。2019 年 IEEE 虚拟现实与 3D 用户界面 (VR) 会议。699–707。https://doi.org/10.1109/VR.2019.8798251 [16] Lin-gun Liu。 2022. 火星和月球上的水。陆地、大气和海洋科学 33, 1 (2022), 3。[17] Erin Mahoney。2022. 美国宇航局将在亚利桑那州沙漠进行阿尔特弥斯月球漫步练习。https://www.nasa.gov/feature/nasa-to-practice-artemis- moonwalking-roving-operations-in-arizona-desert