镍薄膜可用于从微电子到保护涂层 1 和催化等不同应用领域。2,3 Ni 是未来集成电路 (IC) 互连中铜的替代材料之一,因为 Ni 具有低电阻率和低电子平均自由程,当互连尺寸足够小时,它的电阻率会低于铜。4 例如,当线宽低于 10 纳米时,钴的电导率将超过铜,而镍具有相似的体电阻率,但电子平均自由程甚至低于钴。5 通过加热薄膜,可以将沉积在硅上的 Ni 薄膜转化为低电阻率接触材料 NiSi。全硅化物 Ni 栅极可用于互补金属氧化物半导体。6 由于其铁磁特性,镍对于磁存储器的发展至关重要。自旋转移力矩磁阻随机存取存储器 (STT-MRAM) 被认为是一种通用存储器,有朝一日可能会彻底改变整个微电子行业。7
摘要 - 描述了一种利用脉冲信号校准高带宽示波器的系统。快速脉冲示波器校准系统 (FPOCS) 用于确定带宽为 -20 GHz 的数字示波器的阶跃响应参数。该系统可提供测量可追溯性,以符合美国国家标准与技术研究所 (NIS) 维护的标准。它由快速电阶跃发生器硬件、个人计算机 (E) 和计算机以及参考波形 Le、包含阶跃发生器输出信号估计值的数据文件组成。参考波形由 NIST 对阶跃发生器输出信号 (校准阶跃信号) 的先前测量产生。使用 FPOCS 时,校准阶跃信号应用于设备 u n h te4,即示波器采样通道。测量的阶跃波形经过时基误差校正,然后反射系数从 I% 解卷积而来,结果为脉冲、阶跃和频率响应 edhata,以及它们的相关参数(例如过渡持续时间、过渡幅度、-3 dB 带宽)和不确定性。描述了系统及其组件,并给出了初步测试结果
AEA Arctic Energy Alliance CCSF Climate Change Strategic Framework CCYC Climate Change Youth Council CIMP Cumulative Impact Monitoring Program CIRNAC Crown-Indigenous Relations and Northern Affairs Canada COLO Cost of Living Offset COVID Corona Virus Disease ECC Department of Environment and Climate Change ECCC Environment and Climate Change Canada EIA Environmental Impact Assessment ENR Department of Environment and Natural Resources FAQs Frequently Asked Questions FIN Department of Finance GHG Greenhouse Gas GNWT西北地区政府HLHP健康土地,健康人民Igios土著政府和组织ITI ITI工业,旅游业和投资土地使用土地使用卫星Maca Maca Maca MacAinicipal和社区事务NASA NASA NASTAR NIANTAL SEARONAUTICS和SACTASP INTARTY AERAPATII NWT西北地区NWTCCC西北地区气候变化委员会RFP要求提出ROA风险和机会评估智能,可衡量,可衡量,可实现的,现实的,现实的和时间结合的联合国关于土著人民权利的宣言
蒙特·阿米亚塔(Monte Amiata)是一种杂种火山,在中期中期的305至231 ka之间(Laurenzi等,2015)。他们的产品由一系列熔岩和圆顶组成,从气管/纤维化岩石到橄榄石littite(Corticelli等,2015a; Ferrari等,1996; Marroni等,2015)。火山建筑是在岩浆发射期间从NNE – SSW方向排列的岩浆发射期间建造的(Brogi,2008年)。爆发活动发生在两个短期的植物中(Conticelli等,2015a; Ferrari等,1996; Marroni等,2015),与强烈的风化变化所隔离的水平相距(例如熔岩和圆顶的关键特征包含丰富的圆形杂志飞地(Ferrari等,1996及其参考文献),平坦或圆形的地壳元式Xenoliths(van Bergen,1983),Sanidine meg-Acrysts(Balducci&Leonii,1982),1982年,1982年。The area around the volcano underwent a regional uplift of about 2 km, extending from Monte Amiata to Radicofani volcanoes, covering an area of 35 x 50 km caused by an unspecified magma intrusion at a depth of 5-7 km (Acocella & Mu- lugeta, 2001; Acocella et al., 2002).尽管进行了广泛的研究,但仍在关于熔岩流和圆顶之间的地层关系,硅质末端岩浆的岩化,岩浆室内建筑,异教徒的岩石物理特征以及与岩浆的疗法相互作用的辩论。这项研究的主要观点是评估岩浆源发出的热能以及如何传播地质(Van Bergen,1983; et al。,1981; Calamals,1970; Mazzuol&Prattes,1963),1963年,1963年,1963年(Masage,2019; 2019; 2019; 2019; 2019; 2019; 2019; 2019; 2019,1995; 2019年)(Frondin等,2009a; Nisi et al。,2014; 2014; sbrine et an al an al and and and and and and。地形物理学,地形物理学(Jram等,2017; 2017; 2017,2017,201)pemperia tempeia爪(> 250°C)和2-五个标记的市场(Frondini等,2009b; Sbrana等,2021)。
A Armatol 1 , E Armengaud 1 , W Armstrong 2 , C Augier 3 , FT Avignone III 4 , O Azzolini 5 , A Barabash 6 , G Bari 7 , A Barresi 8 , 9 , D Baudin 1 , F Bellini 10 , 11 , G Benato 12 , M Beretta 13 , L Berg´e 14 , M Biassoni 8 , J Billard 3 , V Boldrini 7 , 15 , A Branca 8 , 9 , C Bro↵erio 8 , 9 , C Bucci 12 , J Camilleri 16 , S Capelli 8 , 9 , L Cappelli 12 , L Cardani 10 , P Carniti 8 , 9 , N Casali 10 , A Cazes 3 , E Celi 12, 17, C Chang 2, M Chapellier 18, A Charrier 19, D Chiesa 8, 9, M Clemenza 8, 9, I Colantoni 10, 20, F Collamati 10, S Copello 21, 22, O Cremonesi 8, RJ Creswick 4, A Cruciani 10, A D'Addabbo 12, 17, G D'Imperio 10, I Dafinei 10, FA Danevich 23, M de Combarieu 19, M De Jesus 3, P de Marcillac 14, S Dell'Oro 8, 9, 16, S Di Domizio 21, 22, V Domp`e 10, 11, A Drobizhev 24,L Dumoulin 18,G Fantini 10,11,M Faverzani 8,9,E Ferri 8,9,F Ferri 1,F Ferroni 10,17,E Figueroa-Feliciano 25,J Formaggio 26,J Formaggio 26,A Franceschi 27 ,L Gironi 8,9,A Giuliani 14,P Gorla 12,C Gotti 8,P Gras 1,M Gros 1,TD Gutierrez 29,K Han 30,EV Hansen 13,KM Heeger 31, DL Helis 1 , HZ Huang 28, 32 , RG Huang 13, 24 , L Imbert 18 , J Johnston 26 , A Juillard 3 , G Karapetrov 33 , G Keppel 5 , H Khalife 14 , VV Kobychev 23 , J Kotila 31, 44 , Yu G Kolomensky 13, 24 , S Konovalov 6 , Y Liu 34 , P Loaiza 14 , L Ma 28 , M Madhukuttan 18 , F Mancarella 7, 15 , R Mariam 14 , L Marini 12, 13, 24 , S Marnieros 14 , M Martinez 35, 36 , RH Maruyama 31 , B Mauri 1 , D Mayer 26 , Y Mei 24 , S Milana 10 , D Misiak 3 , T Napolitano 27 , M Nastasi 8 , 9 , XF Navick 1 , J Nikkel 31 , R Nipoti 7 , 15 , S Nisi 12 , C Nones 1 , EB Norman 13 , V Novosad 2 , I Nutini 8 , 9 , T O'Donnell 16 , E Olivieri 14 , C Oriol 14 , JL Ouellet 26 , S Pagan 31 , C Pagliarone 12 , L Pagnanini 12 , 17 , P Pari 19 , L Pattavina 12 , 37 , B Paul 1 , M Pavan 8 , 9 , H Peng 38 , G Pessina 8 , V佩蒂纳奇 10 , C 皮拉 5 , S 皮罗 12 , DV 波达 14 , T 波拉科维奇 2 , OG 波利舒克 23 , S 波齐 8 , 9 , E 普雷维塔利 8 , 9 , A 普尤 12 , 17 , S 奎塔达莫 12 , 17 , A 雷萨 10 , 11 , R 里佐利 7 , 15 , C 罗森菲尔德 4 , C 鲁斯科尼 12 , V 桑格拉德 3 , J 斯卡帕奇 14 , B 施密特 24 , 25 , V 夏尔马 16 , V 施莱格尔 39 , V 辛格 13 , M 西斯蒂 8 , D 斯佩勒 31 , PT 苏鲁库奇 31 , L 塔↵阿雷洛 41 , O 特利尔1 , C 托梅 10 , VI 特雷季亚克 23 , A 茨姆巴留克 5 , M 维拉斯奎兹 42 , KJ 维特尔 13 , SL 瓦加拉奇 13 , G 王 2 , L 王 34 , B 韦利弗 24 , J 威尔逊 4 , K 威尔逊 4 , LA 温斯洛 26 , M 薛 38 , L 严 28 , J 杨 38 , V 叶夫列缅科 2 , V 尤马托夫 6 , MM 扎里茨基 23 , J 张 2 , A 佐洛塔罗娃 14 , S 祖切利 7 , 43
光学通信集成电路的设计涉及各种技术,以提高性能,鲁棒性和功率效率。本文讨论了使用不同拓扑结构的无电感器,可变带宽和功率可观的光接收器前端的发展。它突出了校准时钟和数据恢复系统以最大程度地减少能息影响的重要性。该设计还提出了在65 nm CMOS工艺中制造的高增益宽带逆变器的cascode变速器放大器。多个带宽增强技术用于改善放大器的性能。此外,本文提出了一种低功率医疗设备和高通用性电子设备,该设备几乎没有功耗。20-Gb/s时钟和数据恢复电路的设计结合了用于低功率耗散的高速操作的注射锁定技术。频率监控机制可确保VCO固有频率和数据速率之间的密切匹配。此外,该文章介绍了在0.13 UM CMOS过程中制造的10 GB/S爆发模式变速器放大器(BMTIA),该过程已用于被动光网(PONS)中的爆发模式接收器。SIGE BICMOS中155-MB/S-4.25-GB/S激光驱动器的设计可在具有分段的驱动器切片方案的广泛调制电流上保持动态性能。CDR IC具有添加的Demux功能,并在尖端生产技术中实现。通过引用有关该主题的著名论文和书籍,讨论了硅光子学的最新进展。B.最后,本文讨论了CMOS光学收发器的设计,该收发器符合IEEE802.3AH PX20标准的规格,并在/SPL PlusMn/0.4 DBM和/splplusmn/0.6 db中成功抑制了宽度从-40到100/spl spl deg/c/c。第一本关于可编程光子学的全面书籍提供了对基本原理,架构和潜在应用的深入概述。几项重要的研究表明,用于深度学习,量子信息处理和其他用途的大规模可编程光子电路。最近的一项研究提出了基于氮化硅波导的8×8可编程量子光子处理器,表现出低光损失,对单个光子上的线性量子操作有吸引力(Taballione等,2018)。这项成就引发了人们兴趣探索可编程光子电路处理微波信号的功能。研究人员在开发通用离散的傅立叶光子光子集成电路架构(Hall&Hasan,2016),玻璃芯片上可重构的光子学(Dyakonov等,2018)和光学处理器实现的神经网络(Shokraneh等人,2019年)方面取得了重大进展。这些进步为创新应用打开了大门,例如具有DSP级灵活性和MHz波段选择性的光子RF过滤器(Xie等,2017)。大规模硅量子光子学的发展也使实施了任意的两Q量处理(Qiang et al。,2018)和具有集成光学的多维量子纠缠(Wang等,2018)。pai,S。等。IEEE J. SEL。IEEE J. SEL。此外,还使用可重构光子电路来生成,操纵和测量纠缠和混合物(Shadbolt等,2012)。此外,研究的重点是使用纯正的可编程网格(Annoni等,2017)进行解散光,并实施了综合透明检测器,这些透明检测器可以测量光强度而不诱导额外的光损失。这些可编程光子电路中的这些进步为量子计算,电信及以后的创新应用铺平了道路。任意前馈光子网络的并行编程。顶部。量子电子。25,6100813(2020)。 Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。25,6100813(2020)。Reck,M.,Zeilinger,A.,Bernstein,H。J. &Bertani,P。任何离散统一操作员的实验实现。 物理。 修订版 Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Reck,M.,Zeilinger,A.,Bernstein,H。J.&Bertani,P。任何离散统一操作员的实验实现。物理。修订版Lett。 73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。Lett。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。 &Bogaerts,W。耐受性,宽带可调2×2耦合器电路。 选择。 Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E. 使用双驱动方向耦合器的集成光子可调基本单元。 选择。 Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A. &Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。 J. 光。 技术。 38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。73,58–61(1994)。库ADS CAS CAS PubMed Google Scholar Wang,M.,Alves,A。R.,Xing,Y。&Bogaerts,W。耐受性,宽带可调2×2耦合器电路。选择。Express 28,5555–5566(2020)。插图广告PubMed Google ScholarPérez-López,D.,Gutierrez,A.M.,Sánchez,E.使用双驱动方向耦合器的集成光子可调基本单元。选择。Express 27,38071(2019)。插图广告PubMed Google Scholar Choutagunta,K.,Roberts,I.,Miller,D。A.&Kahn,J。M.在直接检测模式 - 划分链接链路上适应Mach-Zehnder网状均衡器。J.光。技术。38,723–735(2020)。插图广告Google Scholar Miller,D。A. J. Opt。 Soc。38,723–735(2020)。插图广告Google Scholar Miller,D。A.J. Opt。Soc。B.使用自配置网络分析和生成多模光场。Optica 7,794–801(2020)。插图广告Google Scholar Morizur,J.-F。等。可编程的统一空间模式操作。am。A 27,2524(2010)。插图广告Google Scholar Labroille,G。等。基于多平面光转换的高效和模式选择性空间模式多路复用器。选择。Express 22,15599–15607(2014)。饰物ADS PubMed Google Scholar Tanomura,R.,Tang,R.,Ghosh,S.,Tanemura,T。&Nakano,T。使用多层方向耦合器使用多层方向性耦合器。J.光。技术。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A. B. 设置干涉仪的网格 - 反向局部光干扰方法。 选择。 Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。 校准和量子光子芯片的高保真度测量。 新J. Phys。 15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。38,60–66(2020)。库ADS CAS Google Scholar Miller,D。A.B.设置干涉仪的网格 - 反向局部光干扰方法。选择。Express 25,29233(2017)。库ADS CAS CAS Google Scholar Li,H。W.等。校准和量子光子芯片的高保真度测量。新J. Phys。15,063017(2013)。插图广告Google Scholar Cong,G。等。 通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。 选择。 Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。 多功能硅光子信号处理器核心。 nat。 社区。 8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。15,063017(2013)。插图广告Google Scholar Cong,G。等。通过细菌觅食算法对通用硅光子电路进行任意重新配置,以实现可重新配置的光子数字到Analog转换。选择。Express 27,24914(2019)。库ADS CAS CAS PubMed Google ScholarPérez,D。等。多功能硅光子信号处理器核心。nat。社区。8,1–9(2017)。 此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。8,1–9(2017)。此外,传统的CMOS制造方法和材料的使用导致了300mm硅光子学的重大发展(Baudot等,2017)。单层整合的多层硅二硅硅波导平台的最新进展已使三维光子电路和设备的开发(Sacher等,2018)。AIM Photonics MPW已成为一种高度可访问的技术,用于快速的光子综合电路(Wahrenkopf等,2019)。此外,具有紧凑的平面耦合器,跨言式缓解和低跨界损失的多平面无定形硅光子的发展进一步扩大了光子整合电路的能力(Chiles等,2017)。在热控制方面,已经提出了对硅光子电路的热控制的各种加热器架构,包括用于CMOS兼容的硅热硅热电器(Van Campenhout等,2010)的NISI波导加热器(Van Campenhout等,2010),并取消热跨与光的跨核电效应,对光电综合通道效应(MilanizaDeh et al。)。电流效应也在硅中进行了研究,并在光学调节剂中进行了重要应用(Reed等,2010)。此外,用于集成光子学的硅氧核平台的开发使创建具有降低光学损失的光子设备(Memon等,2020)。压电调谐的氮气环谐振器也已被证明,并具有潜在的光子整合电路中的应用(Jin等,2018)。此外,使用压电铅锆钛酸钛酸盐(PZT)薄膜开发了应力调节剂,从而可以创建可调光子设备(Hosseini等,2015)。Wuttig等。派兰多·赫兰兹(Errando-Herranz)等。Quack等。使用液晶壁板还可以广泛调整硅在隔离器环谐振器中,并具有潜在的光子整合电路中的应用(De Cort等,2011)。此外,使用具有液晶浸润的SOI插槽波导开发了数字控制的相变,从而可以创建可调光子设备(Xing等,2015)。最后,在硅硅酸盐和纳米结构的钛酸钡中已证明了大型的效应,并在光子综合电路中具有潜在的应用(Abel等,2019)。开发了用于非易失性光子应用的相变材料。研究了启用MEMS的硅光子集成设备和电路。研究了启用了MEMS硅光子集成设备和电路的性能。通过通用可编程光子电路降低原型光子应用的成本是一个不断增长的领域。几项研究探索了这些电路在各个领域的潜力,包括硅光子系统和IIII-V-ON-ON-ON-ON-ON-ON-ON-ONICON整合。研究人员一直在开发技术,例如用于控制大型硅光子电路的热光相变,以及用于硅光子平台中高速光学互连的活性组件。这些进步可能有可能使创建更有效,更可扩展的光子系统。此外,研究还研究了III-V材料在硅底物上的整合,这可能会导致改善的性能和降低光子学应用的成本。研究人员还一直在探索通过创新来提高光学互连效率的方法,例如基于转移打印的III-V-n-Silicon分布式反馈激光器的集成。最近的工作集中在开发可编程的光子电路上,这些电路可以针对不同的应用进行重新配置,从而有可能减少原型制作所需的成本和时间。这些电路可用于各种光子系统,从高速光学互连到量子技术。还研究了这些发展的经济可行性,研究人员探索了通过使用通用可编程光子电路来降低成本的方法。此外,一些研究已经深入研究了新的应用,例如全光信号处理和光学证明,突出了各个领域的光子学的巨大潜力。改写文本:对光子相关的研究论文的调查和来自信誉良好的来源的文章揭示了对微波信号处理的可编程光子组件的重视。值得注意的是,最近的研究集中在使用集成波导网格的可重构光学延迟线和真实时延迟线的发展。此外,人们对无线电纤维技术,激光雷达系统体系结构和量子计算应用的兴趣越来越大。光子学与其他技术的整合已导致在诸如光谱传感,激光多普勒振动法和光束束成形和转向等领域的显着进步。尽管最初令人兴奋,但身体和经济因素阻碍了进步。此外,对光子生物传感器,硅光子电路和六束同伴激光多普勒振动的研究表明,在各种应用中的准确性和效率提高了潜力。最近的研究还强调了可编程超导处理器和量子机学习算法的重要性。已经探索了使用集成波导网格的可重构光学延迟线和真实时延迟线的开发,重点是提高信号处理能力。用于光谱传感的硅光子电路和六光同源性激光多普勒振动法在各种应用中显示出令人鼓舞的结果。量子计算研究继续前进,最近的研究表明使用可编程超导处理器进行量子至上。光子学与其他技术的集成为改进信号处理,传感和计算功能开辟了新的可能性。Ivan P. Kaminow的2008年Lightwave Technology Journal of Lightwave Technology文章重点介绍了自1969年以来光学综合电路的希望。最近的商业发展可能标志着光子摩尔定律曲线的开始。关键里程碑包括从可见的LED到III-V光子综合电路(图片)的过渡。审查了显着的进步,例如大规模INP发射器和接收器图片,速度高达500 GB/s和1 TB/s。此外,自从CMOS晶圆晶片级集成以来,硅光子电路包装已显着改善。专家通过通用的基础方法预测了微型和纳米光子学的革命,与三十年前的微电子中类似创新的影响相呼应。硅光子学有望为从电信到生物医学领域的各种应用提供低成本的光电溶液。