摘要 基因组 DNA 的可弯曲性影响染色质包装和蛋白质-DNA 结合。然而,我们对影响 DNA 可弯曲性的基序尚无全面的了解。最近的高通量技术(例如 Loop-Seq)提供了解决这一差距的机会,但仍然缺乏准确且可解释的机器学习模型。在这里,我们介绍了 DeepBend,这是一个卷积神经网络模型,其卷积旨在直接捕捉 DNA 可弯曲性背后的基序及其调节可弯曲性的周期性出现或相对排列。DeepBend 的表现始终与其他模型相当,同时通过机械解释提供了额外的优势。除了证实已知的 DNA 可弯曲性基序之外,DeepBend 还揭示了几个新的基序,并展示了基序出现的空间模式如何影响可弯曲性。 DeepBend 的全基因组可弯曲性预测进一步展示了可弯曲性与染色质构象之间的关联,并揭示了控制拓扑相关域及其边界的可弯曲性的主题。
大规模miRNOME分析表明,miR-17-5p,miR-20a,miR-21,miR-21,miR-92,miR-92,miR-106a和miR-155是癌症发病机理的最高候选者(8)。在这些病理miRNA中,miR-155已成为大细胞淋巴瘤,Burkitt Lympho MA,各种B细胞淋巴瘤,乳腺癌,肺癌,肺癌和结肠癌的关键miRNA之一。最近的研究还确定了miR-155在30种肿瘤类型的免疫增强微环境中的次要作用,其中它通过刺激免疫液压骨髓衍生的抑制细胞和免疫能力的DC来起作用(9)。主要miR-155从B细胞积分簇的外显子3转录(BIC;或位于21号染色体上的宿主基因miRHG155)。在核和细胞质加工后,MIR-155预先转换为22-核苷酸miR-155双链双链体包含-5p和-3p链。尽管具有鉴定的生物发生前体,但miR-155-5p和miR-155-3p就像表观遗传双胞胎一样,由于替代性裂解和多腺苷酸化而导致多种多样的且偶尔会产生抗癌功能。
MYC 是多种肿瘤类型中的关键致癌驱动因素,但同时也使癌细胞具有一系列脆弱性,为有针对性的药物干预提供了机会。例如,抑制线粒体呼吸的药物会选择性地杀死 MYC 过表达的细胞。在这里,我们揭示了这种合成致死相互作用的机制基础,并利用它来提高呼吸复合物 I 抑制剂 IACS- 010759 的抗癌作用。在 B 淋巴细胞系中,异位 MYC 活性和 IACS- 010759 治疗加在一起会诱导氧化应激,从而导致还原谷胱甘肽的消耗和氧化还原稳态的致命破坏。这种效果可以通过抑制通过戊糖磷酸途径产生的 NADPH 或抗坏血酸(维生素 C)来增强,已知抗坏血酸在高剂量时可充当促氧化剂。在这些情况下,抗坏血酸与 IACS- 010759 协同作用,在体外杀死 MYC 过度表达细胞,并增强其对人类 B 细胞淋巴瘤异种移植的治疗作用。因此,复合物 I 抑制剂和高剂量抗坏血酸可能会改善高级别淋巴瘤和其他可能由 MYC 驱动的癌症患者的预后。
神经元通过神经血管耦合(NVC)调节血管的活性。对NVC的详细理解对于了解大脑功能成像技术的数据至关重要。NVC的许多方面均已通过实验和使用数学模型进行了研究。已经在啮齿动物,灵长类动物或人类中测量和建模了血液体积和流量,局部场电位(LFP),血红蛋白水平,血液氧合水平依赖性反应(BOLD)和光遗传学的各种组合。ever,这些数据尚未将其汇总到统一的定量模型中。我们现在提出了一个数学模型,该模型描述了所有此类数据类型,并保留了实验之间的机制行为。例如,从小鼠的光遗传学和显微镜数据的建模,我们学习细胞特异性贡献;血管反应中的第一个快速扩张是由无互操神经元引起的,较长刺激过程中扩张的主要部分是由金字塔神经元引起的,峰后峰值下声不足是由NPY-神经元引起的。这些见解在随后的所有分析中被翻译和保存,以及有关血红蛋白动力学和LFP/BOLD-INTERPLAY的其他见解,这些见解是从啮齿动物和灵长类动物的其他实验中获得的。该模型可以预测不用于培训的独立验证数据。通过将数据与来自不同物种的互补信息结合在一起,我们俩都更好地了解每个数据集,并为人类数据的新型综合分析提供了基础。
大约两年半前,《美国病理学杂志》(AJP)推出了一个新的出版主题类别,“机器学习、计算病理学和生物物理成像”。”1 从那时起,AJP 的这个主题类别已经发表了十几篇文章,并且这个主题类别的投稿数量一直在稳定增长。机器学习和最近的深度学习 [以人工智能 (AI) 的新面貌] 在生活的各个方面发挥着越来越大的作用,包括教育、金融、法律、工程、科学、人文学科,甚至圣经文本分析,这个价值数十亿美元的产业还在继续增长。在病理学中,人工智能有望带来范式转变,其影响至少与分子生物学的引入(以及之前的荧光抗体)一样重大。值得注意的是,AJP 是第一批欢迎分子基础文章的病理学期刊之一,独立的美国研究病理学会 (ASIP) 出版物《分子诊断学杂志》就是从这个起点发展而来的。正是这种类比促使 AJP 引入了新的机器学习导向部分。尽管 AJP 一直专注于病理生物学的机制研究,但研究事业的性质已经发生了变化。现在,我们不再需要还原论的、纯粹假设驱动的方法,而是可以在单个实验中生成大量多路复用数据,部署正在积极开发的各种基于组学的策略。此外,临床实践和数据归档的需求导致了庞大的数据库的产生,而这些数据库对于人类来说越来越难以探索;这些数据库几乎肯定包含相关性(有价值的和虚假的)、见解和预测。因此,与其让位于
所有当前的计算思维脑模型均基于对世界的机械(机械哲学)和确定性的视野,这些愿景是出于笛卡尔二元论和牛顿物理学的迹象,它们是在每个知识领域和知识范围内通过普遍机械秩序而进行的。目前,西方关于人类思想在自然界中的地位的理论可以降低到五个:唯物主义,形而上学的唯心主义,二元论,整体主义,量子。基于对现实的两个不同和刺激的物理平面的识别,即张力的平面或域以及能量的平面或能量领域,基于关系的替代性解释是对思维脑系统非线性动力学的替代解释。讨论了拟人化过程的古植物和心理根源。在先前的作品中,综合假设总结了由Planck常数定义的物理尺寸的可能的推导(以及随后的共存),该尺寸是由(带有)由张力梯度的不均匀分布(具有其心理现象的“原材料”所制成的“原材料”所定义的物理维度所定义的。生物系统被定义为在混乱和有序(相干)方案之间的相边界处依赖于非平衡热力学的超复合预期系统嵌入的非线性耗散系统。还讨论了神经细胞在系统发育多样化过程中所起的作用。在结论中,先进的人类学,现象学和物理解释,意识和思想脑系统的动力学是先进的。思维不是物质的内在特性,也不是物质的状态。思维是一种与能量相关的张力的特殊方式,当生物系统的自动植物动态由神经系统关系模块介导。的思维被移植在神经依赖性动力学中经过的感觉(状态变化)上,而能量在混乱的边缘融合成十个,即作为事件所经历的状态变化流,即的关系的结与它们所组成的整体,其价值和相关性是物种特异性的定义。
出版物气候与环境Ruehr,S.,Bassiouni,M.,Kang,Y.,Socolar,Y.,Magney,T.,Keenan,T.F。作物轮作提高了加利福尼亚州中部山谷中的农业用水效率(为自然可持续性做好准备)。Ruehr,S.,Gerlein-Safdi,C.,Falco,N.,Seibert,P.,Chou,C.,Albert,L.,Keenan,T.F。带有新型高光谱成像仪的太阳诱导荧光的季节性和昼夜周期。2024。地球物理研究信,51,14。10.1029/2023GL107429。Ruehr,S.,Girotto,G.,Verfaillie,J.,Baldocchi,D.,Cabon,A.,Keenan,T.F。2023。ecosys- TEM地下水使用可以增强半干旱橡木稀少度中的碳水槽。农业与森林气象学,342,109725。10.1016/j.agrformet.2023.109725。Ruehr,S.,Keenan,T.F.,Williams,C.,Zhou,Y.,Lu,X.,Bastos,A.,Canadell,P.,Prentice,I.C.,I.C.,Sitch,S.,Terrer,C。证据和归属于增强的土地碳水槽。 2023。 自然评论地球与环境,4,518-534。 10.1038/S43017-023-00456-3。 Massoud,E.C。,Andrews,L.,Reichle,R.,Molod,A.,Park,J.,Ruehr,S.,Girotto,M.2022。 在戈达德地球观察系统中,高山地区的季节性预测技能。 地球系统动力学,14,147-171。 10.5194/ESD-14-147-2023。 Ruehr,S。2021。 超出了脆弱性/弹性二分法:对瓦努阿图Emau气候危机的看法和反应。 岛研究杂志。 2020。 干旱环境杂志,176,104120。Ruehr,S.,Keenan,T.F.,Williams,C.,Zhou,Y.,Lu,X.,Bastos,A.,Canadell,P.,Prentice,I.C.,I.C.,Sitch,S.,Terrer,C。证据和归属于增强的土地碳水槽。2023。自然评论地球与环境,4,518-534。10.1038/S43017-023-00456-3。 Massoud,E.C。,Andrews,L.,Reichle,R.,Molod,A.,Park,J.,Ruehr,S.,Girotto,M.2022。 在戈达德地球观察系统中,高山地区的季节性预测技能。 地球系统动力学,14,147-171。 10.5194/ESD-14-147-2023。 Ruehr,S。2021。 超出了脆弱性/弹性二分法:对瓦努阿图Emau气候危机的看法和反应。 岛研究杂志。 2020。 干旱环境杂志,176,104120。10.1038/S43017-023-00456-3。Massoud,E.C。,Andrews,L.,Reichle,R.,Molod,A.,Park,J.,Ruehr,S.,Girotto,M.2022。在戈达德地球观察系统中,高山地区的季节性预测技能。地球系统动力学,14,147-171。10.5194/ESD-14-147-2023。Ruehr,S。2021。超出了脆弱性/弹性二分法:对瓦努阿图Emau气候危机的看法和反应。岛研究杂志。2020。干旱环境杂志,176,104120。10.24043/isj.151 Ruehr,S.,Lee,X.,Smith,R.,Li,X.,Xu,Z.,Liu,S.,Yang,X.对Zhangye Cropland的绿洲效应的机械研究。10.1016/j.jaridenv.2020.104120 Espeland,M.,Hall,J.P.,Devries,P.J.2015。古老的新热带起源和最近的再持续化:riodinidae的系统发育,生物地理学和多样化(鳞翅目:乳头状素)。分子系统发育进化,93,296-306。10.1016/j.ympev.2015.08.006