一氧化氮 (NO) 是许多生理过程的分子介质,包括血管舒张、炎症、血栓形成、免疫和神经传递。目前有许多方法可用于测量生物系统中的 NO。其中一种方法是使用 Griess 重氮化反应,通过分光光度法检测生理条件下 NO 自发氧化形成的亚硝酸盐。该方法的检测限为 1.0 µM 亚硝酸盐。Griess 反应还可用于通过硝酸盐催化还原为亚硝酸盐来分析硝酸盐。
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮在碱性亚砷酸钠或三乙醇胺吸收剂溶液中以亚硝酸根离子的形式固定。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (C.I.50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度降低,随后脱氨。添加溴离子可提高重氮化速率,反应几乎立即完成。亚硝酸盐浓度为 0 – 20 µg 时,符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1 。显色体系可稳定 2 天。染料可在碱性条件下用异戊醇提取,加入甲醇硫酸可恢复染料颜色。摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
摘要作为氮循环中的关键中间体,亚硝酸盐参与了多种生物学途径,这些途径调节了海洋中氮的分布和可用性。在贫营养的回旋中,亚硝酸盐在舒适区的底部附近积聚,表现为最大地下,称为原发性亚硝酸盐最大值;而在亚极区域,亚硝酸盐浓度在近地表海洋中升高。到目前为止,控制这种子午线模式的机制尚不清楚。在这里,我们介绍了从亚热带Gyre延伸到北太平洋亚亚北方阵线的亚硝酸盐生产和消费速率的垂直分析曲线。我们的结果表明,在该盆地中亚硝酸盐的纬度分布受浮游植物 - 氮硝基相互作用的变化的影响。在光线充足的贫营养表面中,浮游植物通过耦合释放和重新仿真占主导地位的亚硝酸盐循环;在舒适区的下方,亚硝酸盐氧化剂的光应力减弱会导致快速离职和限制亚硝酸盐。相比之下,在硝酸盐浓度升高的亚极区域中,在同化硝酸盐还原过程中释放亚硝酸盐,而植物浮游生物和硝化剂之间的氨含量则是放松的,从而促进氨氧化。这些过程,以及氨和亚硝酸盐氧化剂的差异光灵敏度,允许亚硝酸盐的净积累。此外,我们证明了尿素氧化在形成原发性亚硝酸盐最大值并平衡海洋硝化步骤时的实质性贡献。我们的发现揭示了对海洋中亚硝酸盐循环和分布的物理生物互动控制,并有助于解散浮游植物 - 微生物相互作用对海洋氮生物地球化学的复杂作用。
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮以亚硝酸根离子的形式固定在碱性亚砷酸钠或三乙醇胺吸收剂溶液中。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (CI 50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度会降低,然后脱氨。加入溴离子可提高重氮化速度,反应几乎瞬间完成。在 0 – 20 µg 亚硝酸盐范围内符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1。颜色系统可稳定 2 天。在碱性条件下,异戊醇中可提取染料,加入甲醇硫酸可恢复染料颜色。其摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
作者:S Das · 2023 · 被引用 8 次 — 并用于对有害病原体的免疫防御,4 以及其氧化物种,即过氧亚硝酸盐 (ONOO。−。)5 或/二氧化氮 (cNO2) ...
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮以亚硝酸根离子的形式固定在碱性亚砷酸钠或三乙醇胺吸收剂溶液中。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (CI 50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度会降低,然后脱氨。加入溴离子可提高重氮化速度,反应几乎瞬间完成。在 0 – 20 µg 亚硝酸盐范围内符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1。颜色系统可稳定 2 天。在碱性条件下,异戊醇中可提取染料,加入甲醇硫酸可恢复染料颜色。其摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
除草剂clopyralid的污染物(3,6-二氯-2-吡啶 - 羧酸,CLP)对生态系统构成了潜在的威胁。然而,普遍缺乏研究CLP对生物衍生过程扰动的研究,其生物反应机制尚不清楚。在此,对CLP的长期暴露进行了系统的研究,以探索其对硝化性能和动态微生物反应的影响。结果表明,CLP的低浓度(<15 mg/ L)最初引起严重的亚硝酸盐积累,而在长期适应后,CLP的浓度较高(35 E 60 mg/ L)没有进一步的影响。这项机械研究表明,CLP减少了亚硝酸盐还原酶(NIR)活性,并抑制了代谢活性(碳代谢和氮代谢),从而导致氧化应激和膜损伤,从而导致亚硝酸盐的积累。但是,经过80天以上的适应,几乎没有在60 mg/L Clp的情况下发现亚硝酸盐积累。提出,细胞外聚合物物质(EPS)的分泌在15 mg/l Clp时从75.03 mg/g VSS增加到60 mg/l Clp的109.97 mg/g VSS,从而增强了微生物细胞的保护和改善的NIR活性和改善的NIR活性和代谢活性。此外,Mi-Crobial社区的生物多样性和丰富性经历了U形过程。最初硝化和代谢相关的微生物的相对丰度最初降低,然后随着与EPS和N-酰基 - 糖烯内酯分泌有关的微生物的富集而回收。©2021作者。这些微生物保护了微生物免受有毒物质的影响,并调节了它们之间的相互作用。这项研究揭示了成功暴露于CLP后的硝化生物反应机制,并为分析和治疗含除草剂的废水提供了适当的指导。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
仅用于研究使用。不适用于诊断程序。本出版物可能包含对您所在国家不可用的产品的引用。请与我们联系以检查您所在国家的这些产品的可用性。未经Shimadzu的书面批准,本出版物的内容不得出于任何商业目的而复制,更改或出售。有关详细信息,请参见http://www.shimadzu.com/about/trademarks/index.html。本出版物中可以使用第三方商标和商标名称来指代实体或其产品/服务,无论它们是否与商标符号“ TM”或“ tm”或“”一起使用。本文中包含的信息是“原样”提供给您的,没有任何形式的保证,包括无限制保证其准确性或完整性。Shimadzu对与本出版物的使用有关的任何损害(无论是直接或间接的)都不承担任何责任。本出版物基于出版日期或之前的Shimadzu的信息,并在不通知的情况下进行更改。
1。简介香肠。因此,在法国,意大利和西班牙等国家中,发酵香肠的生产是传统的用于干香肠制造的技术,而逐渐消耗的非发酵味的消耗逐渐取代了快速成熟的小直径(,30-40 mm)的债务是依赖于(flores和berm of flores and 30-40 mm)的方法。基于低成熟的使用保证了最终产品的安全性和质量,这种受控的干燥室和开胃培养物的技术是一种香肠。温度(,10–12 8 C)避免了强烈的,这些新技术的好处是不快速发酵,但降低了水活性,尽管减少了干燥时间和产品的安全性。硝酸盐和/或使用开胃剂接种的使用也导致亚硝酸盐固化盐用于生产较差的产物,但就感觉质量而言,尽管硝酸盐主要是硝酸盐,但主要是硝酸盐(Arboles and Julia,Julia,1992)。在地中海国家使用的欧洲(弗洛雷斯,1997年)。在地中海地区的消费者中,否则硝酸盐被认为是硝酸盐的速度较慢的过程,这与快速成熟相关的是对浮游化合物的生成必不可少的(Durand,1990)。使用 *硝酸盐对感觉质量的积极影响与相应的作者有关。电话。:1 34 96 390 0022;传真:1 34 96 - 363 6301;电子邮件:ftoldra@iata.csic.es开发亚硝酸盐敏感的微峰(Lucke,
基于流式细胞术的自动尿液分析仪,UF-1000i是一种可以测量红细胞(RBC),白细胞(WBC),上皮细胞(EC),铸造和细菌在非液体尿液样品中的装置。在本研究中,将用UF-1000i获得的结果与尿液中常规定量尿培养和亚硝酸盐反应获得的结果进行了比较。此外,我们研究了UF-1000i的散点图是否可以区分球菌和杆菌。UF-1000i和常规定量尿培养的结果良好相关,UF-1000i对细菌的敏感性和特异性分别为96.7%和68.1%。由UF-1000I测量的细菌尿中亚硝酸盐反应的阳性速率为12.7%,并且检测到的大部分物种是大肠杆菌。细菌和球菌的UF-1000i散点图的一致性率分别为94.7%和82.7%。在细菌(> 10 5 /ml)中,散点图模式可以区分球菌和杆菌。