生物需要氧气生长和繁殖。“死区”是耗氧(低氧)区域,这些区域是由养分过度灌输的(尤其是氮和磷)所产生的,例如,由于肥料径流,工业废物和污水处理。报告的沿海死区病例在过去的四十年中的每一个中都翻了一番。目前,世界上有500多个已知的死区,而在2003年,只有150个这样的氧气消耗区域。接近其他沿海地区和海洋地区正在经历富营养化的影响。在发展中国家中,被确定为缺氧的地区的数量最快。养分富集刺激了水生系统(藻类开花)的藻类生长的迅速增加。它们可以包括有毒藻类或藻类,在沉积后会损害生命的珊瑚礁。
umaxx®稳定的氮肥提供了针对所有三种形式的氮(N)损失的保护 - 浸出,硝化和挥发。这是一种基于尿素的产品,具有46-0-0分析,含有尿素酶和硝化抑制剂。完全可溶的颗粒状,umaxx®肥料无论是干燥还是溶解在喷雾混合物中同样有效。
MaríaJ。Delgado(西班牙EEZ-CSIC)Oliver Einsle(德国弗莱堡大学)Victor M. Luque-Almagro(西班牙Córdoba大学)Socorro Mesa(Eez-Csic,西班牙)英国东英吉利)Serena Rinaldo(意大利罗马萨皮恩扎)Mark van Loosdrecht(荷兰代尔夫特技术大学)迈克尔·瓦格纳(奥地利维也纳大学)nitrogen nitrogen代谢代谢césar-egor ande-egor ande-egor ande concepciounconcepción Ávila(马拉加大学)拉斐尔·布拉斯科(University of of of of of of of of malaga)拉斐尔·布拉斯科(University of University of of tremaradura)玛丽亚·邦特(Alicante of Alicante)MaríaJ。Delgado(Eez-csic,Granada)Francisco J. Florencio(CSIC)(CSIC) González-Moro(巴斯克大学) (Extremadura大学)RosaM.León(Huelva大学)Conrado Moreno-Vivián(Córdoba大学)
糖是土壤中碳水化合物的主要来源,也是微生物的必需有机化合物。它们可能刺激骨料形成,并充当根部区域中各种过程的触发,例如n循环和土壤有机物的分解。生物学生物学的应用可以在潮水中或作为种子涂层应用,被注入土壤中,作为干肥涂层或叶面喷雾剂。最常见的应用方法是繁殖和种子处理,因为这些方法可确保直接递送生物学。方法选择将取决于产品及其应用的目的。对于某些产品,将生物学与肥料或除草剂相结合会损害生物学。因此,农民应在考虑生物学与其他产品的兼容性的同时特别注意。生物学的处理和存储很重要的是阅读标签,特别是如果生物含有活生物体。正确的存储,处理和应用至关重要。对于所有生物学,建议将产品存储在合适的位置(凉爽,干燥和深色)以保持保质期。应避免与无化学水混合时形成均匀的溶液,并应避免混合后过度的停机时间。除了不使用规定的应用方法外,不正确的储存和无效混合也会影响生物学的功效。实验生物学的任何生物学的有效性可能会因位置而异。本地研究可以帮助评估哪些产品的工作原理,什么不是给定情况。
作为氮酶。ATP的16个分子(ATP =三磷酸腺苷,一种能量存储化合物)代表BNF反应发生所需的能量。形成氨(NH 3),它被转化为氨基酸,例如谷氨酰胺。氨基酸中的氮可以用于植物合成蛋白质的生长和发育。
摘要:我们回复 J.-M. Mewes、A. Hansen 和 S. Grimme (MHG) 的评论,他们对我们通过气体电子衍射 (GED) 确定的 (C 6 F 5 )Te(CH 2 ) 3 NMe 2 中 N···Te 距离的 re 值的准确性提出质疑。我们最终证明,MHG 引用的参考计算结果不如他们声称的固态和气相准确。我们通过更高级别的计算表明,我们并未遗漏开链构象异构体的重大贡献。对模拟散射数据的细化表明,此类贡献对 re (N···Te) 的影响几乎可以忽略不计。MHG 建议使用 H0 调谐的 GFN 方法来计算振动校正 rare ,但这并没有显著改变这些值。使用更高级别的解析谐波和数值立方力场 (PBE0-D3BJ/def2-TZVP) 进行替代振幅计算,得出 re (N···Te) = 2.852(25) 的 GED 值,该值完全在原始值 2.918(31) 的实验误差范围内,但远低于 MHG 预测的 2.67(8)。现在改进的误差估计解释了计算辅助值的不准确性。与其他涉及弱化学相互作用的系统相比,弱 N···Te 相互作用的气固差异处于现实范围内。Mewes、Hansen 和 Grimme 最近的评论 [1]
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮在碱性亚砷酸钠或三乙醇胺吸收剂溶液中以亚硝酸根离子的形式固定。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (C.I.50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度降低,随后脱氨。添加溴离子可提高重氮化速率,反应几乎立即完成。亚硝酸盐浓度为 0 – 20 µg 时,符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1 。显色体系可稳定 2 天。染料可在碱性条件下用异戊醇提取,加入甲醇硫酸可恢复染料颜色。摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
最近,研究人员使用细长的静压探头在 Longshot 高超声速风洞的自由流中进行测量。他们发现,压力大于假设等熵喷嘴流获得的理论值。现在研究了喷嘴膨胀过程中流动凝结的存在,这可能是非等熵性的来源,以解释自由流静压不匹配。研究了不同的停滞温度,它们会延迟或促进流动成核。经证实,Longshot 风洞的标准操作条件没有凝结。在较低停滞温度下进行的实验成功促进了氮的凝结,静压探头可以检测到。与异质成核理论一致,已经实现了微弱的流动过饱和。证明了静压探头的精确性能及其对高超声速流动表征的实用性。