为了尽量减少微生物活动的形成,应遵循几个程序。一些 PEDI 工厂每次进行再生时都会用稀氯溶液冲洗所有便携式罐体部件(罐体、头部、连接器等)。处理这些物品的所有人员还必须小心,不要用脏手或其他设备污染设备。每次进行再生时,离子交换树脂本身都会通过暴露于酸性或碱性 pH 极端值而经历有效的“生物杀灭”。当然,PEDI 工厂必须得到妥善维护并尽可能保持清洁。有些工厂会定期用稀氯溶液清洗再生罐和管道,以尽量减少微污染源。
附加信息同行评审:发行者感谢Sectional Editor和其他匿名审阅者对这项工作的同行评审的贡献。重印和权限信息可从https://horizonepublishing.com/ journals/index.php/pst/pst/open_access_policy Publisher's Notes提供:Horizon E-Publisting Group在公开的地图和机构分配中的管辖权索赔方面仍然是中性的。索引:《今日植物科学》,由Horizon E-Publishing Group出版,由Scopus,Web of Science,Biosis Previews,Clarivate Analytics,NAAS,UGC CARE等涵盖,请参见https://horizonepublishing.com/journals/journals/journals/ index.php/index.php/pst/index/index/index/indexing_abstracting copyright:这是根据Creative Commons归因许可条款分发的开放访问文章,只要原始作者和来源被记入任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制(https://creativecommons.org/licenses/licenses/
生物氮固定(BNF)是一个重要的生态过程,在维持生态系统中氮的平衡中起着至关重要的作用。氮是生命的重要元素,是氨基酸,蛋白质和核酸的主要组成部分。虽然氮在地球大气中很丰富,但它主要是以惰性n 2气的形式,大多数生物都无法直接使用。生物氮固定是某些微生物将大气氮转化为植物可以容易使用的形式的过程,从而有助于生态系统的整体生产力和可持续性。负责生物氮固定的主要药物是固氮细菌,它们与植物形成共生相关性或自由存在于土壤中。这些细菌具有氮化酶,这使它们能够在大气氮中打破强三重键,并将其转化为氨(NH 3)或可以被植物吸收的相关化合物。生物氮固定的生态意义是巨大的,影响了营养循环,植物生长和整体生态系统动力学。
在本文中,我们研究了两个氮 - 牙术中心集合的实验系统的纠缠,该实验系统最初被挤压在单轴扭曲的哈密顿量下。我们考虑了三种情况,其中最初的挤压和纠缠是由声子或光子介导的:(a)声子式的光子符号符号符合的场景,(b)声子式的声子 - 声子 - 纠缠的方案,以及(c)PhotoN-Squeeezed Photon-Squeezed Photon-squeezed phot-endenangled-entangendenangled。为了进行调查,我们采用了Tavis-Cummings模型,其中包括集体旋转合奏的耗散性耗散性,并使用量子主方程的方法分析了系统相对较少的旋转和大量旋转的极限。尽管文献中有关理想化的耦合振荡器系统和量子踢的量子的证据表明,初始挤压可以增强纠缠,但我们发现,在本文研究的现实系统中,初始挤压可以在两种旋转旋转Ensem的特定方式中相互作用。在旋转的参考框架中使用荷斯坦 - 帕里马科的转化和wigner特性功能进行分析表明,纠缠增强是微妙的结果,这是一个微妙的后果,其耗散性折叠旋转集体旋转整体的状态的状态使得增强的增强取决于时间变化的旋转状态,这取决于初始spereee和speereee soseee of Intir-Sporeee of Intir-Squeeee的存在。
可再生能源与绿色氢气生产技术的结合是我们推动可持续能源转型和减少温室气体排放的关键前沿。绿色氢气净化程序是这项努力的核心。水和可再生能源用于电解绿色氢气,绿色氢气作为清洁灵活的能源具有巨大潜力。然而,为了在包括运输在内的一系列行业中充分利用它,必须进行仔细的净化。将可再生能源转化为高质量氢燃料的过程需要精心去除污染物,例如水分、微量氧气和其他可能危及燃料电池和氢基技术效率的杂质。除了满足严格的质量要求外,这种净化程序还提高了氢气利用的能源效率,最终有助于发展更可持续的能源生态。
摘要 传统农业导致化学品的广泛使用,进而对环境造成负面影响,如土壤侵蚀、地下水污染和大气污染。农业系统应该更加可持续,以实现经济和社会盈利以及环境保护。一种可能的解决方案是采用精准农业,这是一种双赢的选择,既能维持粮食生产,又不会破坏环境。精准技术用于收集有关田间空间和时间差异的信息,以便将投入与特定地点的田间条件相匹配。在这里,我们回顾了有关小麦作物精准氮管理的报告。目的是对小麦地点特定氮管理的方法和结果进行调查,并分析这种农业实践的性能和可持续性。在此背景下,我们分析了过去 10 到 15 年的文献。主要结论是:(a)在做出氮管理决策之前,需要测量和了解土壤的空间变异性和小麦氮状况。不同传感器的互补使用以相对较低的成本改善了土壤特性评估; (b)结果表明,机载图像、遥感和近距传感对于通过响应性季节内管理方法预测作物氮素状况非常有用;(c)红边和近红外波段可以穿透冠层的较高植被部分。这些
摘要:高氮利用效率(NUE)或耐低氮的作物育种被认为是减少氮肥过量使用造成的成本、碳足迹和其他环境问题的理想解决方案。作为谷物作物的模型植物,大麦具有许多优点,包括适应性好、生育期短、抗逆性强或耐逆性强。因此,提高大麦 NUE 的研究不仅有利于氮高效大麦育种,而且还将为其他谷物作物的 NUE 改良提供参考。本文总结了大麦对氮营养反应的理解、NUE 或耐低氮性的评估、与提高 NUE 相关的 QTL 定位和基因克隆以及氮高效大麦育种方面的最新进展。此外,还介绍了可用于揭示大麦 NUE 的分子机制或提高大麦 NUE 育种的几种生物技术工具,包括 GWAS、组学和基因编辑。本文还讨论了揭示提高其他作物氮利用效率的分子机制的最新研究思路,从而为提高大麦的氮利用效率提供了更好的理解,并为该领域的未来研究提供了一些方向。
17.61 4.36 *存在313.51AAA 339.25AAA的存在266.85 ABB 356.49AAAA存在存在281.46 AAA 295.32BAA含义295.32BAA含义,随后是相同的小写字母,在列中,在列中,列在列中,第二列是第三列,并在第三列中,第三列和第三列是第三列和第三列和第三列和第三列。第四均值,根据f检验没有差异(p> 0.05)。
原子锁定硅中的位错,从而提高机械强度。[2,3] 用具有不同氧化态的各种元素掺杂硅的影响已得到充分证实。在碳材料中,通过化学取代可以带来物理和化学性质的显著变化。已知碳可以形成复合材料,并且可以掺杂各种材料,包括聚合物、金属氧化物、金属硫化物、金属氮化物、MXenes、金属有机骨架 (MOF) 等。[4–13] 然而,已经证明,用杂原子掺杂碳质材料可以改善各种性能,这是由于导电性增强、缺陷引入、孔隙率增强以及层间距离调整。近年来,一些报告强调了碳质材料在各种应用方面的进展,包括能源应用、传感应用和光伏应用。例如,2013 年,Thomas 和 Paraknowitsch 回顾了碳质材料的设计,并强调了它们在能源设备中的应用。[14] 根据该报告,S 和 P 掺杂导致碳基质中原子尺寸变化,引起结构扭曲和电荷密度改变
随着全球气温升高和温室气体排放增加,多数工业过程都致力于实现碳中和。然而,有一个过程的碳足迹极高,占全球二氧化碳排放量的 6% 并消耗全球能源的约 1-2%1,那就是哈伯-博世法 2 氨合成过程。氨是农业、各类工业和能源应用中不可替代的前体3,4,迫切需要通过光催化、电催化或光电催化途径开发更绿色的 NH 3 合成技术以满足当前需求。5,6 实现氨经济的最佳目标是开发一种像固氮酶一样在环境条件下将 N 2 还原为 NH 3 的催化剂。电催化固氮途径由于其效率和环境友好性而成为有吸引力的替代方案。 7,8 然而,由于 N2 是一种高度稳定的分子,其 N–N 三键能量为 940 kJ mol 1,因此与电催化氮还原反应 (NRR) 相关的动力学较慢,法拉第效率较低。7