尽管霍尼韦尔国际公司认为本文所含信息准确可靠,但本文不提供任何形式的担保或责任,也不构成霍尼韦尔国际公司的任何明示或暗示的陈述或保证。许多因素可能会影响与用户材料一起使用的任何产品的性能,例如其他原材料、应用、配方、环境因素和制造条件等,用户在生产或使用产品时必须考虑所有这些因素。用户不应认为本文包含了正确评估这些产品所需的所有数据。本文提供的信息并不免除用户自行进行测试和实验的责任,用户承担与使用本文所含产品和/或信息相关的所有风险和责任(包括但不限于与结果、专利侵权、法规遵从性以及健康、安全和环境有关的风险)。
过量的氮对明尼苏达州的地表水和地下水以及其他管辖区的下游水域都是有害的。虽然据估计,明尼苏达州的废水部门向明尼苏达州地表水排放的总氮 (TN) 不到 10%,但废水处理厂可能会向单个水体排放大量的硝酸盐和氨氮,特别是在没有太多其他来源或流量低的情况下。这项废水氮减排和实施战略 (战略) 是由 MPCA 与利益相关者协商制定的,旨在实现废水部门保护和恢复明尼苏达州和下游水体所需的氮减排。废水氮减排是明尼苏达州营养物减排战略 (NRS) 的一个组成部分,该战略还涉及非点源。
窄带发射多谐振热激活延迟荧光 (MR-TADF) 发射器是一种有前途的解决方案,无需使用光学滤光片即可实现当前行业针对蓝色的色彩标准 Rec. BT.2020-2,旨在实现高效有机发光二极管 (OLED)。然而,它们的长三线态寿命(主要受其缓慢的反向系统间穿越速率影响)会对器件稳定性产生不利影响。在本研究中,设计并合成了螺旋 MR-TADF 发射器 (f-DOABNA)。由于其𝝅 -离域结构,f-DOABNA 拥有较小的单重态-三重态间隙𝚫 E ST ,同时显示出异常快的反向系统间穿越速率常数k RISC ,高达 2 × 10 6 s − 1 ,以及非常高的光致发光量子产率𝚽 PL ,在溶液和掺杂薄膜中均超过 90%。以 f-DOABNA 为发射极的 OLED 在 445 nm 处实现了窄深蓝色发射(半峰全宽为 24 nm),与国际照明委员会 (CIE) 坐标 (0.150, 0.041) 相关,并显示出较高的最大外部量子效率 EQE max ,约为 20%。
氮生产单元是炼油厂中最重要的单位之一,根据需求和现有条件,其功能不同。在本研究中,目的是通过更改Hysys软件(V14-2024)的操作条件来优化氮生产单元中的能源消耗。本文的优点和新颖性是因为饲料的数量和纯度没有改变,并且由于炼油厂单位的能源消耗的重要性,因此在单位过程中观察到了大量能源减少。要确定软件中的目标函数,设备的能量量,包括冷却器,进料压缩机,冷凝器和重新启动器。之后,所有这些值在一个单元格中添加在一起以确定目标函数。模拟结果表明,与初始值相比,能源消耗优化了17.4%。
摘要。森林生态系统的氮(n)状态的变化可以通过改变土壤有机含量(SOM)分解,土壤酶活性和植物 - 土壤相互作用,直接和间接地影响其car(c)隔离潜力。但是,链接的C – N周期和SOM衰减的模型表示未通过实验数据得到很好的验证。在这里,我们使用来自现有实验性森林的长期全挥发性研究的大量数据来比较两个土壤模型的n扰动的响应,这些响应以不同的方式代表分解动态的n扰动性(第一阶衰变与微生物显式脱粒的重新确定重新介绍了Michaelis-Michaelis-enteren Kinetics)。这两个土壤模型与提供相同输入数据的常见植被模型耦合。对研究地点测得的N添加的关键反应包括植物分配的转移,以有利于木质生物量在地下碳输入上,土壤呼吸减少,颗粒有机含量(POM)的积累以及土壤C:N比的增加。植物模型并未捕获植物C分配中经常观察到的转移,而n添加了n添加,从而导致土壤反应的前提不佳。我们修改了植物c分配方案的参数,以促进木材生产,而不是添加n个添加物,从而显着改善了植被和土壤呼吸的重音。此外,为了引起土壤C库存的增加和c:n比的增加,如所观察到的,我们修改了土壤模型中POM的衰减速率。通过这些修改,两种模型均捕获了负面的土壤呼吸和阳性土壤C库存反应,
摘要:使用尿素肥料的硝化抑制剂(Thiourea和硝化抑制剂“ A”)用于提高氮效率。硝化抑制剂和氮量通过尿素肥料施加到蛋白表中的水稻种子。整个实验是通过以下治疗方法进行的; urea application as a control at 2gN/10kg (200 kg N/ha), urea application 2gN/10kg (200 kg N/ha) added with 1.0%, 0.5%, 0.1%, 0.05% and 0.01% of thiourea (w/w) and urea application 2gN/10kg (200 kg N/ha) added with 1.0%, 0.5%, 0.1%, 0.05% and 0.01% of nitrification抑制剂“ A”(w/w)单独和组合形式。浸出样品是从圆柱裂解器中引起的,并在第一次,3 2秒,第三和第四周观察到NO和NO氮。使用紫外可见度3 2分光光度计,也观察到了NO和NO还原酶的活性。发现所有治疗方法都降低了硝化过程中涉及的氮浸出和酶活性。还可以观察到,硫脲,硝化抑制剂的0.01%和硝化抑制剂“ a”的含量为“ A”,以降低浸出样品3 2中的NO和NO浓度,并在第四周后降低了土壤中NO和无还原酶的活性。3 2
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮以亚硝酸根离子的形式固定在碱性亚砷酸钠或三乙醇胺吸收剂溶液中。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (CI 50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度会降低,然后脱氨。加入溴离子可提高重氮化速度,反应几乎瞬间完成。在 0 – 20 µg 亚硝酸盐范围内符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1。颜色系统可稳定 2 天。在碱性条件下,异戊醇中可提取染料,加入甲醇硫酸可恢复染料颜色。其摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
在地中海地区提高柑橘的氮摄取效率,该农作物预先占主导地位,对于降低地下水污染和增强环境可使性至关重要。这与农场与分叉战略(欧洲绿色交易)目标保持一致,该目标旨在将矿物肥料的使用最多减少20%,并完全消除氮污染的土壤。在这种情况下,探索植物生长促进细菌以减少养分输入的潜力是一个有前途的机会。本研究的目的是评估单独接种的两种枯草芽孢杆菌菌株的作用,或与酿酒酵母结合使用15 N标记的肥料摄取效率和生理参数。个体接种对树水的积极影响,叶叶绿素浓度(Spad-values)和光合作用的prove摄,从而增强了树木的生长。肥料-15 N使用效率提高,磷和钾摄入也是如此。相反,在与S酿酒酵母共接种的树木中未观察到任何反应。因此,PGPB可以被认为是减少柑橘园合成肥料的一种有趣手段,从而最大程度地减少了环境影响并实现可持续生产实践。
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮以亚硝酸根离子的形式固定在碱性亚砷酸钠或三乙醇胺吸收剂溶液中。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (CI 50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度会降低,然后脱氨。加入溴离子可提高重氮化速度,反应几乎瞬间完成。在 0 – 20 µg 亚硝酸盐范围内符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1。颜色系统可稳定 2 天。在碱性条件下,异戊醇中可提取染料,加入甲醇硫酸可恢复染料颜色。其摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
许多基于化学合成的社区在深海环境中繁荣发展,依赖于硫化物氧化细菌的代谢活性。术后siboglinid tubeworms就是这种情况,其对营养的需求主要通过其endosymbiotic细菌来满足,其中包括在一个称为The Troposomy体的专用器官中。这种化学共生的导致滋养体的氮同位素组成明显低于其他类型的软组织。然而,Sibo Glinids的氮利用的特定过程尚不清楚。作为相关酶(氮酶和硝酸盐还原酶)的关键要素,在氮的生物地球化学循环中是必不可少的。Siboglinids的Mo同位素组成(δ98MO)是解码与氮代谢有关的过程的潜在代理。在这项研究中,我们发现了Δ98mo值沿着南部中国海的Haima渗漏的actimentiferan siboglinid paraescarpia echinospica沿着 - 4.59‰的阴性(-1.13‰±1.75‰±1.75‰±1.75‰,n = 19) - 自然量为Δ98mo的δ98mo值。建议这种极为负的同位素组成是由硝酸盐减少期间的肾小管内共生体或epibionts降低引起的同位素cally light mo引起的。这样的MO同位素签名可以提供一种用于识别Siboglinid Tubeworms的手段,Siboglinid tubeworms是一组因缺乏矿物质骨骼而在岩石记录中由于缺乏矿化骨架而逃脱了明确鉴定的annelids。