根据 NASA 发射服务 II (NLS II) 合同的规定,发射服务包括运载火箭 (LV) 和相关标准服务、非标准服务(任务特有选项)、所有工程和分析以及最低性能标准。LSP 还提供发射服务的技术管理、LV 生产/测试的技术洞察、协调和批准特定任务的集成活动、提供任务特有的 LV 硬件/软件开发、提供有效载荷处理设施以及管理发射活动/倒计时。在任务选择后的适当时间,LSP 将根据客户要求通过竞争性方式选择发射服务提供商并授予任务发射服务。发射服务将授予根据技术能力/风险、提议价格的合理性和过去的表现提供最佳发射服务价值以满足政府要求的承包商。因此,除非有唯一来源的坚实技术理由,否则作为 AO 提案的一部分假设特定的运载火箭配置并不能保证将选择提议的 LV 配置。任何此类理由都应在提案中明确说明和解释。所有 NASA 采购的发射服务都将符合 NASA 政策指令 (NPD) 8610.7D,即 NASA 发射服务风险缓解政策。NASA 采购的发射服务将按照 NPD 8610.23C,即运载火箭技术监督政策和 NPD 8610.24C,即发射服务计划 (LSP) 发射前准备情况评估进行管理。这些 NPD 可通过 AO 库访问。
新泽西州立图书馆将其几乎所有的LSTA资金都定向到少数全州计划。除了LSTA行政支出和2016年使用FFY 2015资金授予的一些小扫盲赠款外,所有LSTA美元都用于支持六个项目。实际上,在评估涵盖的三年期间,仅支付了84%的LSTA分配以支持两个计划。这两个程序(新泽西州立图书馆谈话书和盲文中心和JerseyClicks数据库许可程序)支持目标1。很难想象两个更多的不同项目。会说话书和盲文中心(TBBC)对较少的目标人群(以NJSL为特征为印刷障碍者)产生了很大的影响。JerseyClicks数据库许可计划在其家中,学校,工作场所和图书馆中吸引了各种各样的州受众。评估人员发现这两个程序都具有使其出色的特定特征。尽管TBBC服务的听众很小,而且每单位服务的成本很高,但新泽西谈话的书籍计划具有积极主动和创新的悠久历史。TBBC在与本地图书馆建立连接方面做得非常好,以为有资格获得国家图书馆服务(NLS)计划的视力障碍和其他个人建立服务。JerseyClicks计划为
生活/救生学习。这些产品是开放式访问,可从www.resus.org.uk获得。此外,RCUK开发了几个高级培训课程,这些课程已量身定制,以满足英国的医疗保健需求,例如先进的生命支持(ALS);欧洲小儿先进的生命支持(EPALS);立即的生活支持(ILS);新生儿生活支持(NLS)。可以在www.resus.org.uk/training-courses上找到这些培训产品的完整列表。这些课程由RCUK质量确保,并由RCUK教练在英国认可的课程中心提供。在英国RCUK以外的RCUK课程中,遗憾的是,它无法认可在英国境外进行的培训。提供培训是一项艰巨的任务,除非接受教练培训和支持这一支持的行政程序的基础,否则通常是不可持续的。最好使用当地的专业知识和与国家复苏委员会(如果有)联系,以开发满足当地需求的课程来实现可持续计划。欧洲复苏委员会(ERC)具有通过与国家复苏委员会的合作来支持和颁布欧洲和其他国家的复苏课程的机制。ERC和RCUK课程是相同的,并在国际上得到认可。所有RCUK课程材料和评估工具均具有版权。在特殊情况下,可以允许复制和使用一些RCUK教学材料,但只有在提出并接受了详细的书面申请后。申请表可以从以下下载:www.resus.org.uk/library/application-permission-preduce-roduce-rcuk-materials。rcuk无法补贴课程材料的提供或生产,但根据要求,可能能够以电子格式提供课程材料。
转录因子 (TF) 是一种蛋白质,它通过与特定 DNA 序列结合,通过与基因组中的特定调控元件相互作用来激活或抑制基因表达,从而充当基因表达的关键调节器。TF 通常具有多个功能域,这些功能域有助于其调节功能。这些功能域基本上由三个域组成:核定位信号 (NLS) 域、DNA 结合域 (DBD) 和激活域 (AD)。通过这些域的协调相互作用,TF 响应细胞内的各种内部和外部信号来调节基因表达。TF 复杂机制的缺陷与越来越多的人类疾病有关。因此,基于 TF 的基因调控研究被认为是许多生物应用的有前途的方法。在这种情况下,研究人员旨在使用一种称为 NanoScript 的基于纳米粒子的平台来模拟 TF 的结构和功能特性。NanoScript 的作用类似于天然 TF,可实现精确的基因调控和细胞重编程,并为控制和有针对性地操纵基因表达提供了新的可能性。 NanoScript 的主要目标是以非病毒方式在转录水平上调节基因表达。NanoScript 可以通过与内源 DNA 相互作用并启动转录活性来激活特定基因,作为基因操作和细胞重编程的蛋白质替代合成结构。该平台由于其可调组件(纳米粒子和表面组件)和有效调节基因表达的能力,在干细胞生物学、癌症治疗和细胞重编程领域具有多种应用潜力。然而,NanoScript 也有一些局限性,例如可能与脱靶基因相互作用。本研究讨论了 NanoScript 在基因调控领域的当前研究和技术,以及该技术的优势和挑战。
老人,。先生,我 .V lir,是 'i.t I ' 的诉讼的 sul,nit.ini,,n。上述文件被保管,所有文件均以 ll 的名义签发。I' Wills;M. L. Moore;W. R,Bills;.1 K. Clark;E,II。'rmii.-i- Mrs. A. I'lnrk;C. 11。• ' 看:c。A.Su - e s ; f ,1。 l'.aili-;你好'。W 111 i.i i"i - ; \V..1.B o p p W 1 Klrursburj ; W. W. Allen; C. L. In 1,-is,, l i ; I'.W e l l i i i a : II.N e l s o n ; I.•; mn ii 11: A. W, Cooley ; C Bruce; <\ I Dick : C, II.Ilill-oni ; E 11 Sl,', bin.; .1..1 Potter: I. M, Sweeney : J. II.McKewin; W. C. Blley;M. rowllk;,1,[.. Kiehimlsim;\v。V. Cbaesman!V. It。AbbOtl;W,C. Win,Ini,•:T。 1'。I,.,,i。:w,i.. Stanley;A \\ Ooolsj M \ risk;Tl,。Bass;B.A. Sullivan;W L. Bbarpi I. Reeaequlic;v. 1.,I. II,I lark;.1。C. Howard:'.I。
本文档为NASA提供的发射服务提供了其他信息。NASA提供的任何商业发射车(LV)将由NASA/发射服务计划(LSP)使用政府合同来采购和管理。在此AO下,建议者不得安排其他访问空间的访问。根据NASA启动服务II(NLS II)合同的规定,发射服务包括发射车辆(LV)和相关的标准服务,非标准服务(任务独特选项),所有工程和分析以及最低绩效标准。LSP还提供发布服务合同管理,发布服务的技术管理,对LV生产/测试的技术洞察力,协调和批准特定于任务的集成活动,提供任务独特的LV硬件/软件开发,提供有效载荷处理的住宿以及管理发射活动/倒计时。在适当的时间,在任务选择之后,LSP将竞争性地选择发射服务提供商,并根据客户要求为任务颁发启动服务任务订单(LSTO)。LSTO被授予承包商,该承包商根据技术能力/风险,提议价格的合理性以及过去的绩效提供了最佳的发射服务价值,以满足政府的要求。因此,作为AO建议的一部分,特定的启动车辆配置的假设将不能保证,除非有唯一的源头有牢固的技术原理,否则将选择拟议的LV配置。应在提案中清楚地确定和解释任何此类理由。所有NASA制造的发射服务均与NASA政策指令(NPD)8610.7,NASA发射服务风险缓解政策一致。NASA收购的发射服务将根据NPD 8610.23,对消耗性发射车的技术监督(ELV)发射服务和NPD 8610.24,发射服务计划(LSP)预启动准备就绪综述。可以通过AO程序库(https://explorers.larc.nasa.gov/apsmex25/smex/smex/programlibrary.html)访问这些NPD。
图 1 布氏锥虫 PCF 中的 GFP 失活。(a)对组成性表达胞浆 eGFP 的布氏锥虫进行荧光流式细胞术分析。在用 20 μ g(无 Cas9、Cas9/gRNA GFP1、Cas9/gRNA GFP2、Cas9/gRNA GFP3)或 60 μ g(Cas9/gRNA GFP2)来自 IDT 的 RNP 复合物转染后 24 至 72 小时随时间监测 GFP 荧光,条形图显示用不同向导转染后 72 小时 GFP 阴性细胞的百分比(n = 3)。采用 Prism 软件进行统计分析,采用 t 检验(非配对、正态分布、参数检验和双尾)。显着性水平(p 值)用星号表示。 (b)上图显示了允许 e Sp Cas9 在大肠杆菌中表达的质粒的示意图。蓝色框表示蛋白质 N 端和 C 端的两个多组氨酸序列,红色框表示 TEV 和肠激酶 (EK) 蛋白酶的切割位点,灰色框表示三个核定位信号 (NLS),黑色框表示 FLAG 表位的三个重复,橙色框表示 e Sp Cas9 编码序列。下图显示了在用来自 IDT 或实验室纯化 (Lab) 的 RNPs 复合物 (无 Cas9、20 μ g Cas9/gRNA GFP2、40 μ g Cas9/gRNA GFP2、40、60 和 80 μ g Cas9/gRNA GFP2) 转染后 72 小时监测的表达 GFP 的 T. brucei 的荧光流式细胞术分析。(c)不再表达 GFP 的克隆中 GFP 基因的一部分的序列比较。该序列仅显示 GFP2 向导 RNA 所针对的区域。灰色框(H1 和 H2)突出显示可能用于 MMEJ 修复的同源区域。由实验室纯化的 Cas9 失活产生的序列和来自商业 Cas9 的序列分别标记为 Lab 和 IDT。下面显示了 Dc6 和 Ba10 克隆的相应色谱图(置信区间 95%— p 值样式:0.1234 (ns);0.0332 (*);0.0021 (**);0.0002 (***);< 0.0001 (****))。
标题:通过蛋白质传输耦合作者靶向蛋白质迁移:Christine S. C. Ng,1 Aofei Liu,1 Bianxiao Cui,1 Steven M. Banik 1,2 * 1化学系,斯坦福大学,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,加利福尼亚州94305,美国。2 Sarafan Chem-H,斯坦福大学,加利福尼亚州斯坦福大学94305,美国。 *通讯作者。 电子邮件:sbanik@stanford.edu摘要亚细胞蛋白定位调节蛋白质功能,并且可以在癌症1和神经退行性疾病中损坏2-4。 已经注释了许多蛋白质的定位5-7,并且在药理学上相关的方法来精确重新定位以解决疾病驱动表型,这将是一种有吸引力的目标治疗方法。 分子利用班车蛋白的运输来控制靶蛋白的亚细胞定位,可以为靶向蛋白质重新定位提供相互作用的培养基疗法的途径。 为了实现这一概念,我们采用了一种定量方法来识别控制劫持蛋白质运输能力,开发梭子蛋白和配体的收集能力的特征,并证明了具有内源性定位信号的蛋白质的重新定位。 使用自定义成像分析管道,我们表明,可以通过将靶蛋白与含有足够强的本地本地定位序列的靶蛋白进行分子偶联来克服内源性定位信号。 小分子介导的FUS R495X从细胞质中固定在细胞核中,在细胞应激模型中减少了细胞应激颗粒的数量。 简介2 Sarafan Chem-H,斯坦福大学,加利福尼亚州斯坦福大学94305,美国。*通讯作者。电子邮件:sbanik@stanford.edu摘要亚细胞蛋白定位调节蛋白质功能,并且可以在癌症1和神经退行性疾病中损坏2-4。已经注释了许多蛋白质的定位5-7,并且在药理学上相关的方法来精确重新定位以解决疾病驱动表型,这将是一种有吸引力的目标治疗方法。分子利用班车蛋白的运输来控制靶蛋白的亚细胞定位,可以为靶向蛋白质重新定位提供相互作用的培养基疗法的途径。为了实现这一概念,我们采用了一种定量方法来识别控制劫持蛋白质运输能力,开发梭子蛋白和配体的收集能力的特征,并证明了具有内源性定位信号的蛋白质的重新定位。使用自定义成像分析管道,我们表明,可以通过将靶蛋白与含有足够强的本地本地定位序列的靶蛋白进行分子偶联来克服内源性定位信号。小分子介导的FUS R495X从细胞质中固定在细胞核中,在细胞应激模型中减少了细胞应激颗粒的数量。简介我们将核激素受体作为可行的班车发展,可以用靶向固定化激活分子(TRAM)来利用,以重新分布驱动疾病的突变蛋白,例如SMARCB1 Q318X,TDP43 D NLS和FUS R495X。使用CAS9介导的敲入标签,我们证明了低丰度(FOXO3A)和高丰度(FKBP12)内源性蛋白质的核富集通过分子偶联到核激素受体运输。最后,在原代神经元中,小分子介导的NMNAT1从核向轴突重新分布能够减慢轴突变性,并在药理学上模仿WLDS从小鼠到某些类型的NeuroDegeneration 8。因此,靶向蛋白质重新定位的概念可以通过相互作用重新布线来治疗疾病的方法。
a,示意图,显示了MCMBP介导的组装,并将MCM3-7导出到核中,该核能形成新生的MCM,用MCM2作为恢复前复合物,并调节DNA复制叉速度。nls表示核定位信号。b,从顶端到基础位置的MCMBP的时空表达,从E12.5到E15.5。c,蛋白质印迹分析显示了皮质发育产前和产后阶段的MCMCBP表达模式。d,在P3处的CKO小鼠和同窝对照的代表性图像。红色星星指示CKO鼠标。e,(左图)MCMBP +/ +的背视图; EMX1-CRE和MCMBP FL/FL; EMX1-CRE(CKO)P4大脑。(右图)与同窝对照(CTRL)相比,CKO中的皮质区域显着降低。(平均,两尾未配对的t检验,ctrl:n = 7,cko:n = 5)。f,(左图)MCMBP +/ +和CKO P4脑的DAPI染色冠状切片。与同窝对照(CTRL)相比,CKO的皮质板厚度显着降低了皮质板厚度。(平均,两尾未配对的t检验,ctrl:n = 7,cko:n = 5)。g,MCMBP +/ +的P4脑中的层标记物BRN2,TBR1,LHX2和TLE4的免疫染色; EMX1-CRE和CKO。h,与同窝对照组(CTRL)相比,CKO的上层神经元显着降低。(均值,两尾未配对的t检验,BRN2,TBR1,CTRL:n = 8,cko:n = 5,lhx2,tle4,ctrl:n = 4,cko:cko:n = 4)。i,蛋白质印迹分析显示了E15.5,E16.5和P4 Cortex中MCMCBP表达的下调。(平均,两尾未配对的t检验,ctrl:n = 3,cko:n = 3)。J,MCMBP +/ +中的顶祖细胞标记物SOX2和中间祖细胞标记的免疫染色; EMX1-CRE和CKO从E12.5到E16.5。K,SOX2+细胞数分析表明,在E12.5处CTRL和CKO之间没有差异。但是,由于E13.5,Sox2+细胞显着降低并持续到E16.5。(mean, two-tailed unpaired t-test, E12.5, ctrl: n=5, cKO: n=4, E13.5, ctrl: n=4, cKO: n=3, E14.5, ctrl: n=5, cKO: n=5, E15.5, ctrl: n=6, cKO: n=4, E16.5, ctrl: n=6, CKO:n = 4)。l,EOMES+细胞数分析表明,在E12.5和E13.5处CTRL和CKO之间没有差异。但是,Eomes+细胞从E14.5显着降低到E16.5。(mean, two-tailed unpaired t-test, E12.5, ctrl: n=3, cKO: n=3, E13.5, ctrl: n=4, cKO: n=4, E14.5, ctrl: n=4, cKO: n=4, E15.5, ctrl: n=4, cKO: n=3, E16.5, ctrl: n=4, CKO:n = 3)。