对可用数据的重新审查,并考虑降低的种间评估因子为1,“木酸,可作为皮肤美白剂,浓度为1.0%,在剩下的面霜中,通常将其应用于面部和/或手,以结论是对消费者安全的结论。SCC表示,“通常知道人类对HPT轴扰动的影响要比大鼠不易受到的敏感性,” ''众所周知,“人类对HPT轴的障碍敏感得多,”援引RIVM Report 601516009/2002第二部分(Rivm,2002年)。 SCC在最近的观点(SCC,2022年)中指出:“由于有时将Kojic Acid添加到剥离剂中,因此皮肤屏障弱的障碍物可能会增加,因为皮肤吸收较大,则可能会引起人们的关注。” 在这种意见中(SCC,2022),SCCS得出结论,1%曲酸的浓度可用于化妆品的预期用途。 计算了大于100的足够保护性的安全缘(MOS)。 这是基于28天口腔毒性研究的6 mg/kg bw/day的NOAEL(Tamura等人 ,1999年),由3个安全系数调整为3,以从28至90天的时间内推断,导致调整后的NOAEL为2 mg/kg bw/day。''众所周知,“人类对HPT轴的障碍敏感得多,”援引RIVM Report 601516009/2002第二部分(Rivm,2002年)。 SCC在最近的观点(SCC,2022年)中指出:“由于有时将Kojic Acid添加到剥离剂中,因此皮肤屏障弱的障碍物可能会增加,因为皮肤吸收较大,则可能会引起人们的关注。” 在这种意见中(SCC,2022),SCCS得出结论,1%曲酸的浓度可用于化妆品的预期用途。 计算了大于100的足够保护性的安全缘(MOS)。 这是基于28天口腔毒性研究的6 mg/kg bw/day的NOAEL(Tamura等人 ,1999年),由3个安全系数调整为3,以从28至90天的时间内推断,导致调整后的NOAEL为2 mg/kg bw/day。''众所周知,“人类对HPT轴的障碍敏感得多,”援引RIVM Report 601516009/2002第二部分(Rivm,2002年)。 SCC在最近的观点(SCC,2022年)中指出:“由于有时将Kojic Acid添加到剥离剂中,因此皮肤屏障弱的障碍物可能会增加,因为皮肤吸收较大,则可能会引起人们的关注。” 在这种意见中(SCC,2022),SCCS得出结论,1%曲酸的浓度可用于化妆品的预期用途。 计算了大于100的足够保护性的安全缘(MOS)。 这是基于28天口腔毒性研究的6 mg/kg bw/day的NOAEL(Tamura等人 ,1999年),由3个安全系数调整为3,以从28至90天的时间内推断,导致调整后的NOAEL为2 mg/kg bw/day。''众所周知,“人类对HPT轴的障碍敏感得多,”援引RIVM Report 601516009/2002第二部分(Rivm,2002年)。SCC在最近的观点(SCC,2022年)中指出:“由于有时将Kojic Acid添加到剥离剂中,因此皮肤屏障弱的障碍物可能会增加,因为皮肤吸收较大,则可能会引起人们的关注。”在这种意见中(SCC,2022),SCCS得出结论,1%曲酸的浓度可用于化妆品的预期用途。计算了大于100的足够保护性的安全缘(MOS)。这是基于28天口腔毒性研究的6 mg/kg bw/day的NOAEL(Tamura等人,1999年),由3个安全系数调整为3,以从28至90天的时间内推断,导致调整后的NOAEL为2 mg/kg bw/day。
产品:在28天的口腔研究中以100、300和1000 mg/kg/天的剂量在大鼠中测试了TEDA的系统性和生殖作用。在以300 mg/kg/天的成年动物的肾脏中观察到可逆的炎症变化。出生时的垃圾大小,产后存活和生长以1000 mg/kg/天的降低。生殖和新生儿毒性的口服无观察到的不良效应级别(NOAEL)为300 mg/kg/day。父母系统性毒性的口服Noael为100 mg/kg/day。在另一项研究中,通过吸入大鼠暴露于TEDA的气溶胶(6小时/天,5天/周,四周),名义浓度为5.8、63和620 mg/m3。组织病理学显示中和高剂量动物中的中度慢性喉炎。高剂量动物也表现出对裸露的皮肤和眼睛的严重刺激。一只高剂量大鼠死亡。吸入Noael为5.8 mg/m3。
不利的胚胎效果包括增加植入后丧失和胎儿畸形的发病率,包括阿纳萨卡,脐腺疝,diaphragmaraticals疝气,胃脊髓,胃肠道,皮cle裂,肉眼性,肠道性,肠道性动脉,Spina bifida,spina bifida bifida bifida bifida bifida bifida bifida,encephalomentiation ancephalomentiations anceelecele,heortecele and folet ancelecele folecele,heortelecele folect and sellet(sellet folece),脑中和多层(多余的脑膜)椎骨,胸骨和肋骨;这些研究中未观察到的不良效应水平(NOAEL)为每公斤3毫克。Aflibercept在兔子中评估的所有剂量上都产生了胎儿畸形,胎儿Noael均未鉴定出来。在最低剂量下,在兔(每公斤0.1 mg)中产生不良胚胎效应,自由抗原的全身暴露(AUC)约为8 mg玻璃体剂量后,人类在人类中的群体药代估计全身暴露(AUC)的0.9倍。
抽象的简介和目标。牛奶,除营养外,还可能包含不良物质,包括生物胺,例如组胺,可能导致严重中毒。考虑到消费者的安全,重要的是要了解组胺的浓度不仅是市场上牛奶中的牛奶,而且还在储存的牛奶中。这项研究的目的是在牛奶的储存过程中分析组胺浓度。uht(n = 21)和巴氏杀菌(n = 20)的奶。组胺浓度由ELISA确定。在打开奶的当天以及24h,48h和7天的冷藏储存之后测量浓度。将确定的组胺浓度与该单胺的MLP值进行了比较。计算了牛奶来源的组胺的EDI和NOAEL和LOAEL值中EDI的百分比。结果。组胺浓度变化,但不超过MLP值。这种生物胺的浓度较高与热处理(UHT),脂肪含量(≤1.5%)和储存时间(开放后7天)有关。牛奶的蛋白质含量仅在储存7天后才显着影响组胺浓度 - ≥3.3g蛋白/100 mL的奶中的组胺浓度最高。在整个存储期间,EDI/NOAEL和LOAEL的百分比均不超过100%,而不管暴露情况如何。敏感个体记录了最高的EDI/NOAEL值:1.8%(第0天) - 2.2%(第7天)。结论。在UHT羊奶中,组胺浓度明显高于巴氏杀菌奶,脂肪含量为≤1.5%的奶中的含量比2%且≥3.0%的奶油含量≤1.5%。牛奶中组胺的浓度随时间的变化而增加。在任何存储阶段,检查的牛奶可以被认为是组胺含量的安全。
SIAR 人类健康结论总结 3-氨基丙基三乙氧基硅烷 (APTES) 已通过口服、皮肤和吸入途径进行了急性毒性测试。大鼠急性口服 LD 50 范围为 1570 至 3650 mg/kg bw。皮肤 LD 50 为 4.29 g/kg bw,水解物的 4 小时吸入 LC 50 大于 7.35 mg/L。暴露于 APTES 的饱和蒸气六小时并未杀死 5 只雄性或雌性大鼠中的任何一只(LT50 > 6 小时)。肾脏是口服和皮肤暴露毒性的目标器官。APTES 对皮肤和眼睛有严重的刺激性。在 Buehler 对豚鼠的研究中,30 只动物中有 7 只出现皮肤致敏反应。这种材料的水解产物在豚鼠最大剂量试验中不会引起致敏反应。大鼠反复吸入 147 mg/m 3 的 APTES 水解物可吸入气溶胶达四周,导致鳞状化生和微小肉芽肿性喉炎灶。兔子在 9 次重复皮肤剂量 17 或 84 mg/kg bw/day 或 3 次重复皮肤剂量 126 mg/kg bw/day 后未观察到全身毒性;接触部位 NOAEL 低于 17 mg/kg bw/day。在对大鼠进行的 90 天口服(管饲)研究中,APTES 的无可见不良反应水平 (NOAEL) 为 200 mg/kg bw/day。 APTES 已在数项细菌回复突变/Ames 试验、体外 V79 仓鼠肺细胞和中国仓鼠成纤维细胞染色体畸变试验、两项中国仓鼠卵巢细胞 HGPRT 基因突变试验和一项体内小鼠微核试验中进行了测试。体内和体外筛选试验均未发现任何遗传毒性的证据。在对大鼠进行的 90 天口服管饲研究中,在最高剂量水平(600 mg/kg/天)下,未观察到对发情周期和精子发生或生殖器官参数的影响。已确定大鼠口服(管饲)暴露 APTES 后,其发育影响的 NOAEL 值为 100 mg/kg bw/天,根据死亡和胃肠道溃疡计算的母体毒性 NOAEL 为 <0.5 mL/kg。环境 估计的分配系数 Log Kow 为 0.31,估计的水溶性为 7.6x10 5 mg/l;这些值可能不适用,因为该材料水解不稳定。20 o C 时的蒸气压为 0.02 hPa,熔点为 -70 o C,1013 hPa 时的沸点为 223 °C。光降解模型表明,由于与光化学诱导的 OH 自由基发生反应,在大气中的半衰期约为 2.4 小时。但是,由于 APTES 水解不稳定,因此光降解作为一种去除方式不太可能发生,预计不会成为显著的降解过程。APTES 在一系列与环境相关的 pH 值和温度范围内水解不稳定(t 1/2 < 1 小时)
hec =人类等效浓度; hed =人类等效剂量; pod =出发点; MOE =暴露余量; BMDL =基准剂量下限; uf =不确定性因子; noael =没有可观察到的不良效应水平A BMDL 5是由NASEM(2017)通过大鼠的两项DINP研究的胎儿睾丸睾丸激素数据得出的(Boberg等,2011; Hannas et al。,2011)。R代码支持NASEM的元回归和DINP的BMD分析,可通过GitHub公开获得。b肝毒性包括增加相对肝脏体重,增加血清化学(即AST,ALT,ALP)和组织病理学发现(例如,在饮食中2年暴露于DINP(Lington et al。,1997年),F344大鼠在F344大鼠中的组织病理学发现(例如局灶性坏死,肝脏肝)。c Lington研究介绍了Bio/Dynamics(1986)的较大良好实验室实践(GLP)认证研究的一部分数据。
在评论中,CIR SSC提出,在大多数CIR报告中,定量的系统性风险评估可能没有用,但强调有必要在可能的情况下纳入透明的暴露评估(对于全身和真皮暴露)。此外,他们认为,尽管计算安全余量(MOS)对于完成每项CIR安全评估可能不是必不可少的;当完成曝光评估并确定了(A)EL(或LOAEL)的实验评估时,需要对此类计算进行计算。使用Vermeer Cosmolife进行暴露估算的CIR SSC倡导者,强调该工具的曝光参数源自SCCS指导(NOG)的SCCS; 1但是,他们建议不要将综合珊瑚模型用于NOAEAL预测,因为该模型依赖于有限的培训集,并且不适合除了该培训设置之外的确定风险评估。此外,CIR SSC在诸如经合组织工具箱之类的硅模型中也相信其他人对识别否(a)EL进行定量风险评估也不有效;取而代之的是,最好根据报告中提出的数据识别Noaels(和Loaels)。
摘要:人类和其他生物体通过大气、饮用水、食物或直接接触不断接触成千上万种化学物质。这些化学物质中很大一部分浓度很低,即使在未观察到不良影响水平 (NOAEL) 下也可能产生协同作用。复杂的污染物混合物很难通过传统的毒理学方法进行评估。人们越来越关注不同污染物如何通过影响昼夜节律而诱导人体不良的生理功能。然而,从大量化学物质或其复杂混合物中筛选出具有昼夜节律破坏作用的化合物非常困难。我们通过 CRISPR/Cas9 建立了稳定的萤火虫荧光素酶报告基因敲入 U2-OS 细胞系,以筛选昼夜节律破坏污染物。荧光素酶基因插入核心时钟基因 BMAL1 下游并由内源启动子控制。与使用外源启动子的检测系统相比,这些细胞能够检测干扰 BMAL1 基因表达介导的昼夜节律系统的化合物。U2-OS 敲入细胞显示,当用 BMAL1 抑制剂和激活剂处理时,BMAL1 和荧光素酶活性发生了平行变化。此外,荧光素酶报告基因具有高灵敏度,比传统毒理学方法更快、更经济。敲入细胞系可用于高通量、高效筛选破坏昼夜节律的化学物质,例如药物和污染物。
NIOSH 已决定将帕妥珠单抗从 NIOSH 危险药物名单中移除。帕妥珠单抗在职业暴露期间造成的危害很小,因为预计帕妥珠单抗具有较低的全身生物利用度,这限制了在会导致胎儿伤害的水平下进行必要的重复全身暴露的机会。预计帕妥珠单抗在吸入、皮肤或口服暴露后具有非常低的全身生物利用度。意外的职业性经皮暴露不太可能提供单次足够的剂量或重复次数足以达到显著的人体剂量。生物利用度的缺乏和员工接触有害剂量的可能性可能会将潜在职业暴露相关的危害降至最低。帕妥珠单抗的数据并未提供胚胎-胎儿致死率、肾发育不全、肾脏发育受损、羊水不足或其他发育毒性发生率增加的无不良作用水平 (NOAEL)。然而,单次最坏情况的接触不太可能导致观察到的最敏感的健康影响,即羊水过少或其他观察到的影响。对于羊水过少的发生,最坏情况的接触可能需要在妊娠中期和晚期持续或频繁重复。虽然工人可能会吸入单次最坏情况的剂量,但这种情况不太可能频繁重复,以至于产生足够大的剂量来对胎儿造成伤害。