计算所需的磷酸盐缓冲盐水 (PBS) 稀释液瓶数。一瓶含有 50 mL 稀释液的稀释液足以通过滴眼液为 1000 只鸟接种疫苗。用 5 mL PBS 重新配制疫苗。将重新配制的疫苗倒回稀释液瓶中,再次轻轻混合。将疫苗转移到滴管瓶中。注意不要对鸟造成物理伤害,牢牢抓住每只要接种疫苗的鸟,将头部放置到一只眼睛上,让疫苗滴入其中。将一滴疫苗滴在一只眼睛的结膜表面。观察滴剂是否被吸收。
滴眼剂给药:用稀释剂稀释疫苗,轻轻摇晃,使冻干疫苗颗粒完全溶解。将一滴(0.03 毫升)稀释的疫苗滴入鸟的眼睛。饮水给药:让鸟群禁水 1-2 小时。在炎热的天气下,只需禁水 1 小时(或根本不禁水)。以前一天饮水量为参考,估计鸟群在 1-2 小时内的饮水量。将正确数量的脱脂奶粉(4 盎司/10 加仑或每升水 2.5 克)溶解在干净容器中的水中。从冰箱或冷藏箱中取出正确剂量的疫苗,将小瓶浸入脱脂奶粉悬浮液中,彻底混合。冲洗疫苗瓶 2 到 3 次。将疫苗注入含有脱脂牛奶的饮用水中。
参考文献 1. Winterfield RW 等,1957. 家禽科学 36: 1076-1088 2. Borland LJ 和 WH Allen,1980. 禽类病理学 9: 45-59 3. Hitchner SB 和 EP Johnson,1948. 兽医学 43: 529-530 4. Allan WH 和 LJ Borland,1979. 禽类病理学 8: 401-409 5. Eidson CS 和 SH Kleven,1980. 家禽科学 59: 976-984 6. Spalatin J 和 RP Hanson,1976. 禽类疾病 20: 654-660
▪AMPV,IBV,NDV,IBDV,ARV和EDSV:疫苗发生后80周▪IBDV和ARV在后代:IBV菌株QX-D388(GI-19基因型)(GI-19 Genotype),VAR2(GI-23 Genotype),var2基因型(GI-23 Genotype)和GI-1(GI-Q1)(GI-23 Genotype)和QI-16(GI-16基因16)(GI-19基因型)(GI-19基因型)(GI-19基因型)(gi-19基因型)(GI-19基因型)(GI-19基因)和QI-16(GI-23 Genotype)(GI-16)。已为IBDV抗原变异菌株(变体E和GL)建立了交叉保护。已针对ARV基因型2、3和5建立了交叉保护。3.3禁忌症无。3.4特殊警告仅接种健康动物。3.5使用特殊预防措施在目标物种中安全使用的特殊预防措施:不适用。为动物施用兽医产品的人要采取的特殊预防措施:给用户:这种兽医药物含有矿物油。意外注射/自我注射可能会导致严重的疼痛和肿胀,尤其是如果注射到关节或手指中,在极少数情况下,如果未给予及时的医疗护理,可能会导致受影响的手指的丢失。如果您不小心注入了这种兽医产品,请寻求及时的医疗建议,即使只注入了很小的数量并随身携带包裹传单。如果疼痛在体检后持续超过12小时,请再次寻求医疗建议。对医师:这种兽医产品含有矿物油。即使注射了少量,这种兽医药物的意外注入也会引起急剧肿胀,例如,这可能导致缺血性坏死,甚至导致数字丢失。保护环境的特殊预防措施:不适用。专家,及时的,需要手术注意力,可能需要尽早切开和灌溉注射的区域,尤其是在涉及手指浆或肌腱的情况下。3.6不良事件鸡:
Qualitative composition of excipients and other constituents Lyophilisate : Sorbitol Hydrolysed gelatine Pancreatic digest of casein Disodium phosphate dihydrate Solvent: Patent Blue V (E131) Potassium dihydrogen phosphate Disodium phosphate dihydrate Disodium edetate dihydrate Sodium chloride Sodium hydroxide or盐酸(用于pH调节)进行注射冻干的水:偏白,主要是球形的。溶剂(溶剂oculo/nasal):蓝色溶液。3。临床信息3.1目标物种鸡。3.2用于使用鸡的主动免疫的每个目标物种使用的适应症,以减少由传染性支气管炎病毒(IBV)的QX样变体引起的鸟类感染性支气管炎的呼吸迹象。免疫发作:3周。免疫持续时间:8周。3.3禁忌症无。
1. 兽药名称 Nobilis IB 4-91 冻干粉用于鸡的眼鼻悬浮液/饮用水中 2. 定性和定量成分 每剂重组疫苗含有: 活性物质:减毒活禽传染性支气管炎病毒 (IBV),变异株 4-91:≥ 3.6 log10 EID 50 * * EID 50:50% 胚胎感染剂量 - 使 50% 接种的胚胎感染所需的病毒滴度。有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 冻干粉用于鸡的眼鼻悬浮液/饮用水中。小瓶:灰白色/奶油色颗粒 杯子:灰白色,主要为球形 4. 临床特点 4.1 目标物种 鸡。 4.2 使用指征,指定目标物种 对鸡进行主动免疫,以减轻由变异株 IB 4-91 引起的传染性支气管炎呼吸道症状。 4.3 禁忌症 无。 4.4 针对每个目标物种的特殊警告 仅给健康动物接种疫苗。疫苗病毒可能会从接种疫苗的鸡传播给未接种疫苗的鸡,因此应注意将接种疫苗的鸡与未接种疫苗的鸡分开。接种疫苗后,请洗手和消毒双手和设备,以避免病毒传播。 4.5 特殊使用预防措施 动物使用特殊预防措施 Nobilis IB 4-91 仅适用于保护鸡免受由 IBV 变异株 4-91 引起的呼吸道疾病症状的侵害,不能替代其他 IBV 疫苗。该产品应仅在确定 IBV 变异株 4-91 在该地区具有流行病学相关性后使用。应注意避免将变异株引入不存在该变异株的地区。
感染传染性支气管炎病毒后,上皮细胞表面的纤毛会被破坏。气管的保护系统明显减弱,从而有利于继发性病原微生物的侵入。可以使用纤毛停滞测试来量化睫毛破坏效果。
fi g u r e 3 TLR-7编码DNA序列单倍型的中间连接网络以及在侵入性个体中Microsatellites和TLR基因座的P. rudis等位基因的组成。上面:考虑了八十六个序列:敏感,抗性和未定义的诺比利杆菌表型的38、30和8单倍型,以及rudis或杂交的10个单倍型,自然抗性表型。连接线上的破折号提到了单倍型之间的突变数。饼图的大小反映了观察到的单倍型的个体的数量。下面:分别考虑了微卫星和TLR基因座的十二个基因座和14个基因座。左:个人内部的P. rudis等位基因的比例。右:TLR基因座的P. Rudis等位基因的组成。ptl,蛋白质收费,(a)重叠群38,093,(b)重叠群84,580,(c)重叠群39,158。
摘要:环境 DNA (eDNA) 有可能在稀有和濒危水生物种调查中发挥重要作用。eDNA 采样是一种非侵入性技术,对于难以调查的小型隐蔽物种,它可能是一种比传统技术更可行、更有效且更便宜的替代方法。我们使用 eDNA 调查了美国新墨西哥州查韦斯县苦湖国家野生动物保护区的 5 种濒危春季特有物种。2018 年 7 月对泉水中的 40 个水样进行了评估,以确定其中是否存在 Gambusia nobilis、Gammarus desperatus、Juturnia kosteri、Pyrgulopsis roswellensis 和 Assiminea pecos 的残留 DNA。我们在 50% 的地点检测到了 G. nobilis 的 eDNA,在 42.5% 的地点检测到了 J. kosteri 的 eDNA,在 27.5% 的地点检测到了 P. roswellensis 的 eDNA,在 20% 的地点检测到了 G. desperatus 的 eDNA,但在任何地点均未检测到 A. pecos eDNA。我们还研究了影响这些濒危物种占用模式的栖息地条件,并制定了栖息地参数阈值,以指导保护决策。盐度和溶解氧影响 G. desperatus 、 P. roswellensis 和 J. kosteri 的样本占用率,但只有溶解氧影响 G. nobilis 的样本占用率。结果强调了使用 eDNA 监测 5 种春季特有物种中的 4 种的有效性,并深入了解了每种物种的栖息地偏好,这将有助于推动保护活动。关键词:濒危物种·eDNA·占用·湿地·软体动物·鱼类
马立克氏病 (MDV) 是一种鸡淋巴肿瘤疾病。MD 的临床症状包括抑郁、体重减轻和神经系统疾病,但有些鸡在突然死亡之前不会出现任何视觉症状。MD 引起的致癌免疫抑制极大地影响了生产性能,导致家禽业遭受巨大的经济损失。马立克氏病是由 α-疱疹病毒引起的,在鸡中形成慢性感染,在世界各地普遍存在。为了控制 MD,MDV 的减毒活毒株,如 CVI988/Rispens Gallid α疱疹病毒 2(血清型 1)和非致癌 Gallid α疱疹病毒 3(血清型 2)SB-1 毒株和火鸡疱疹病毒 (HVT) Meleagrid α疱疹病毒 1(血清型 3)已被用作单一或联合疫苗,具体取决于现场攻击条件。在本研究中,我们比较了 Nobilis® Rismavac、Nobilis® Rismavac 与 Innovax®-ND-IBD 的组合、RN1250(含有活疱疹嵌合株的马立克氏疫苗,称为 RN1250,A 公司)以及 RN1250 与 rHVT-IBD 的组合(皮下注射)的疗效。总共 150 只 SPF 蛋鸡被随机分成 5 组,每组 30 只:第 1 组 - 未接种疫苗,为攻毒对照组;第 2 组 - 接种 Nobilis® Rismavac 并攻毒;第 3 组 - 接种 Nobilis® Rismavac + Innovax®-ND-IBD 并攻毒;第 4 组 - 接种 RN1250 并攻毒;第 5 组 - 接种 RN1250 + rHVT-IBD 并攻毒。 SPF 雏鸡在 1 日龄时根据分组接种疫苗后,被放置在单独的负压隔离器中(每个隔离器 10 只鸡)。为了评估疫苗接种的效果,在 5 日龄时肌肉内接种了强毒力 MDV (vvMDV) RB1B 攻击毒株。攻击后,对所有组别的 MD 临床症状进行评分,最长为攻击后 70 天 (dpc)。研究结束时,所有剩余的鸡都被人道处死,并评估肉眼可见的病变。根据欧洲药典 (Ph. Eur.) 中 MD 疫苗(活)第 2-3-3 节计算所有组的相对保护率 (RPP)。本研究结果显示,针对 vvMDV RB1B 攻击的疫苗接种可诱导中等至高水平的保护。第 1 组(攻毒对照组)的所有鸡在 10 至 11 天后因出现明显的马立克氏病临床症状而被安乐死,这证实了研究中使用的攻毒病毒的毒性。在所有接种疫苗的组中,第 3 组的相对保护率 (RPP) 最高,为 96.7%:接种 Nobilis® Rismavac + Innovax®-ND-IBD 的鸡。虽然接种 RN1250 + rHVT-IBD 的组(第 5 组)的 RPP 为 90%,但单次接种 RN1250 的组(第 4 组)的 RPP 为 63.3%,在接种疫苗的组中得分最低,而接种 Nobilis® Rismavac 的鸡(第 2 组)的 RPP 为 89.7%。接种 RN1250 疫苗的鸟类是唯一未达到欧洲药典 80% 保护要求的群体。总而言之,结果证实,使用单一 MDV 疫苗或与重组 HVT 疫苗组合可以获得针对 vvMDV 的适当疫苗接种,然而,结果也证实并非所有 MDV 疫苗都能产生相同的高水平保护,在选择 MDV 疫苗以获得最佳保护时需要提醒这一点。