1。Submission of notification ............................................................................................ 9 2.Approval of Import Inspection of Animals ................................................................... 10 3.Modification of Notification ......................................................................................... 10
摘要 - 非事物网络(NTN)对于无处不在的连通性至关重要,可在遥远和非层面区域提供覆盖范围。但是,由于目前NTN是独立运作的,因此他们面临诸如隔离,可扩展性有限和高运营成本等挑战。与地面网络集成卫星的明显,提供了一种解决这些局限性的方法,同时通过应用人工智能(AI)模型实现自适应和成本效益的连接。本文介绍了Space-O-Ran,该框架将开放式无线接入网络(RAN)原理扩展到NTN。它使用分布式空间运行智能控制器(Space-rics)的层次结构闭环控制,以动态管理和优化两个域之间的操作。为了启用自适应资源分配和网络编排,所提出的体系结构将实时卫星优化和控制与AI驱动的管理和数字双(DT)建模集成在一起。它结合了分布式空间应用程序(SAPP)和分离的应用程序(DAPP),以确保在高度动态的轨道环境中的稳健性能。核心功能是动态链接接口映射,它允许使用卫星上的所有物理链接适应特定的应用程序要求并更改链接条件。仿真结果通过分析不同NTN链接类型的LAS限制来评估其可行性,表明群集内协调在可行的信号延迟范围内运行,而将非实时时间任务降低到地面基础架构对地面基础设施的降低可以增强对第六代(6G)网络的可扩展性。
1简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2 1.1我们的结果。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 1.2申请。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 2技术概述。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。5 2.1构建块:非相互作用乘法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2 NIDPF构造的概述。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6 3预序。 。 。 。 。 。 。 。 。 。 。 。5 2.2 NIDPF构造的概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 3预序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 3.1表示法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 3.2添加秘密共享。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 3.3加密假设。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 3.4 NIDLS框架。 。 。 。11 3.4 NIDLS框架。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 3.5度2秘密键HSS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 4非相互作用乘法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 4.1 NIM具有乘法输出重建。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 4.2矩阵乘法的简洁nim。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 4.3基于组假设的构造。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 4.4基于晶格假设的构造。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 5非相互作用DPF。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 5.1模拟算术模量N.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 5.2 NIDPF框架。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 5.3 SXDH的随机付费实例化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 6对简洁的多键HSS的概括。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 7同态秘密共享。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32
在连续变化(CV)量子物理学中,高斯国家长期以来一直是研究的富有成果的话题[1-10]。它们自然而然地作为热状态形式的许多非相互作用颗粒的系统的基础状态[11],或描述了由激光发出的光的相干状态[3]。通过非线性过程,可以将噪声降低到超过射击噪声限制(以互补可观察到的噪声增加的价格),并产生挤压状态[12-17]。出于Metrol-Ogy的目的,这种挤压状态通常足以获得性能的显着提升[18-21]。在理论上,高斯州相对容易处理[8,9]。高斯智能功能描述了连续变量可观察物的量子统计(例如,量子光学中的四倍)。所有有趣的量子特征都可以从相协方矩阵中推导,该协方差矩阵表征了相位空间上的高斯分布。因此,每当模式的数量仍然有限时,符号矩阵分析的技术就足以研究高斯量子状态。这已经对高斯州的纠缠特性产生了广泛的了解[22-27],最近它也导致了高斯州的量子转向(参见[28])的发展[29-32],我们将其称为Einstein-Podolsky-Podolsky-podolsky-podolsky prosen(Epr)。即使它们具有许多优势,高斯州对
任何人都可以自由访问可作为“开放访问”的作品的全文。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。使用所有其他作品的使用要求正确持有人(作者或出版商)同意,如果不符合适用法律的版权保护。
1美国贝勒医学院病理与免疫学系的药物发现中心,美国德克萨斯州休斯敦77030,美国。2 Verna和Marrs McLean生物化学与分子药理学系,贝勒医学院,德克萨斯州休斯敦77030,美国。3,明尼苏达州明尼阿波利斯,明尼苏达州,明尼苏达州,分子生物学和生物物理学系,分子生物学和生物物理学,美国明尼苏达州55455,美国。4美国贝勒医学院国家热带医学院儿科系,美国德克萨斯州休斯敦77030。 5美国德克萨斯州贝茨街1102号,德克萨斯州休斯敦市贝茨街1102号疫苗开发中心,美国德克萨斯州77030,美国。 6伯克利结构生物学中心分子生物物理学和综合生物成像,劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利94720,美国。 7,德克萨斯大学圣安东尼奥大学生物化学与结构生物学系,德克萨斯州圣安东尼奥市,美国78229,美国。 8霍华德·休斯医学院,德克萨斯大学健康圣安东尼奥分校,圣安东尼奥,德克萨斯州78229,美国。 9这些作者同样贡献:Ravikumar Jimmidi,Srinivas Chamakuri,Shuo Lu。 10这些作者共同监督这项工作:Srinivas Chamakuri,Timothy Palzkill,Damian W. Young。 ✉电子邮件:srinivas.chamakuri@bcm.edu; timothyp@bcm.edu; damian.young@bcm.edu4美国贝勒医学院国家热带医学院儿科系,美国德克萨斯州休斯敦77030。5美国德克萨斯州贝茨街1102号,德克萨斯州休斯敦市贝茨街1102号疫苗开发中心,美国德克萨斯州77030,美国。 6伯克利结构生物学中心分子生物物理学和综合生物成像,劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利94720,美国。 7,德克萨斯大学圣安东尼奥大学生物化学与结构生物学系,德克萨斯州圣安东尼奥市,美国78229,美国。 8霍华德·休斯医学院,德克萨斯大学健康圣安东尼奥分校,圣安东尼奥,德克萨斯州78229,美国。 9这些作者同样贡献:Ravikumar Jimmidi,Srinivas Chamakuri,Shuo Lu。 10这些作者共同监督这项工作:Srinivas Chamakuri,Timothy Palzkill,Damian W. Young。 ✉电子邮件:srinivas.chamakuri@bcm.edu; timothyp@bcm.edu; damian.young@bcm.edu5美国德克萨斯州贝茨街1102号,德克萨斯州休斯敦市贝茨街1102号疫苗开发中心,美国德克萨斯州77030,美国。6伯克利结构生物学中心分子生物物理学和综合生物成像,劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利94720,美国。7,德克萨斯大学圣安东尼奥大学生物化学与结构生物学系,德克萨斯州圣安东尼奥市,美国78229,美国。8霍华德·休斯医学院,德克萨斯大学健康圣安东尼奥分校,圣安东尼奥,德克萨斯州78229,美国。 9这些作者同样贡献:Ravikumar Jimmidi,Srinivas Chamakuri,Shuo Lu。 10这些作者共同监督这项工作:Srinivas Chamakuri,Timothy Palzkill,Damian W. Young。 ✉电子邮件:srinivas.chamakuri@bcm.edu; timothyp@bcm.edu; damian.young@bcm.edu8霍华德·休斯医学院,德克萨斯大学健康圣安东尼奥分校,圣安东尼奥,德克萨斯州78229,美国。9这些作者同样贡献:Ravikumar Jimmidi,Srinivas Chamakuri,Shuo Lu。10这些作者共同监督这项工作:Srinivas Chamakuri,Timothy Palzkill,Damian W. Young。✉电子邮件:srinivas.chamakuri@bcm.edu; timothyp@bcm.edu; damian.young@bcm.edu
摘要:埃弗里特的许多世界或多元宇宙理论是试图找到标准哥本哈根量子力学解释的替代方法。埃弗里特的理论在钟声上通常被认为是本地的。在这里,我们表明事实并非如此,并通过详细分析Greenberger -Horne -Zeilinger(GHz)非局部定理来揭示矛盾。我们讨论并比较了埃弗里特文学中经常混合的地方的不同概念,并试图解释混乱的本质。我们在许多世界理论中讨论了概率和统计学,并强调,理论中分支之间存在的强对称性禁止概率定义,并且该理论无法恢复统计。这一矛盾的唯一途径是通过添加隐藏的变量来修改理论,因此,新理论是明确的,是明确的钟声。
免责声明/投诉法规,如果您认为某些材料的数字出版会侵犯您的任何权利或(隐私)利益,请告诉图书馆,说明您的理由。在合法投诉的情况下,图书馆将使材料无法访问和/或将其从网站上删除。请询问图书馆:https://uba.uva.nl/en/contact,或致:阿姆斯特丹大学图书馆,秘书处,Singel 425,1012 WP阿姆斯特丹,荷兰。您将尽快与您联系。
Mbaye Dieng,Mohamed Bensifia,JérômeBorme,Ileana Florea,Catarina Abreu等。CVD石墨烯的湿化学非共价官能化:分子掺杂及其对电解质配备石墨烯现场效果晶体管晶体管的影响。物理化学杂志C,2022,126(9),pp.4522-4533。10.1021/acs.jpcc.1c10737。hal-03871463