对于特定设备,存在大量的可靠性经验。它包含两种计算组件级故障率的基本方法,即“零件应力法和零件计数法”。零件计数法只需要有限的信息(例如组件类型、复杂性和零件质量)即可计算零件故障率。手册的零件计数部分是通过将更复杂的零件应力法的模型因子分配给通常预期的略微保守的估计值而得出的。所有特定的默认值均在手册的附录 A 中提供。零件应力法需要更多信息(例如外壳或结温以及电气工作和额定条件)来执行故障率计算。在手册制定之前,每个承包商都有自己独特的数据集,必须完全了解其来源,然后才能进行有意义的设计比较。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
抽象背景:需要更好地了解患者不遵守2型糖尿病药物以设计有效的干预措施来解决此问题。目标:(1)估计不遵守糖尿病药物的患病率; (2)检查其对血糖控制和胰岛素启动的影响; (3)开发和验证不遵守的字典模型。方法:我们根据电子健康记录的数据进行了纵向队列研究。我们包括在巴利阿里群岛(西班牙)的卫生服务中注册的成年患者,在2016年1月至2018年12月之间开始了非胰岛素降糖药物的新处方。我们在12个月的随访中计算了不遵守性,被定义为用药比率(MPR)80%。我们拟合了多变量回归模型,以检查不遵守性与血糖控制与胰岛素起始的关联以及不遵守的预测指标。结果:在鉴定出12个月后随访后发现的18,119名患者中,有5,740(31.68%)是非依附者。与非依从性的粘附患者相比,HBA1C水平较低(平均差异¼-0.32%; 95%CI¼-0.38%; -0.27%),启动胰岛素的可能性较小(AOR¼0.77; 95%CI¼0.63; 0.63; 0.94; 0.94; 0.94)。一个预测模型解释了22.3%的变化,并提出了令人满意的性能(AUC¼0.721; Brier得分¼0.177)。不遵守的最重要预测因素是:非西班牙国籍,目前工作,对先前药物的依从性低,吸收了Biguanides,吸烟者和缺乏高血压。结论:大约三分之一的患者不遵守其非胰岛素降糖药物。在考虑其在常规临床实践中实施之前,需要进行更多的研究来优化预测模型的性能。
Irene Rummelhoff 自 2018 年起担任 Equinor ASA(总部位于挪威的国际能源公司)的营销、中游和加工 (MMP) 执行副总裁,并自 2015 年起担任该公司的企业执行委员会成员。MMP 在全球拥有 3600 多名员工,她负责 Equinor 所有产品的流动保障、加工和营销,包括在挪威大陆架营销挪威国家的天然气和原油。她的职责包括开发公司的氢气和碳捕获与储存 (CCS) 价值链。
电气调节深脑的设备已使神经和精神疾病的管理中的重要突破。此类设备通常是厘米尺度,需要手术插入和有线供电,从而增加了每日活动期间出血,感染和损害的风险。使用较小的远程材料可能导致侵入性神经调节较少。在这里,我们提出了能够无线传输电信号的磁电纳米电极,以响应于外部磁场。这种调节机制不需要对神经组织的遗传修饰,允许动物在刺激过程中自由移动,并使用非共振载体频率。使用这些纳米电极,我们在体内表现出神经元调节的体外和深脑靶标。我们还表明,局部亚乳头调制促进了通过基底神经节电路连接的其他区域的调制,从而导致小鼠行为变化。磁电材料提出了一种多功能平台技术,可用于侵入性较小的深脑神经调节。
经典信号处理和非经典信号处理:信号的节奏 作者:Attaphongse Taparugssanagorn 本书首次出版于 2023 年 剑桥学者出版社 Lady Stephenson 图书馆,纽卡斯尔,NE6 2PA,英国 大英图书馆出版数据编目 本书的目录记录可从大英图书馆获取 版权所有 © 2023 Attaphongse Taparugssanagorn 保留本书的所有权利。 未经版权所有者事先许可,不得以任何形式或任何方式(电子、机械、影印、录制或其他方式)复制、存储在检索系统中或传播本书的任何部分。 ISBN (10):1-5275-2864-2 ISBN (13):978-1-5275-2864-2
该计划得到了美国能源部的国家和社区能源计划(SCEP)的支持,该计划在美国的非营利计划和2022年的2022年资助机会公告(FOA)方面提供了非营利双党双方基础设施法(BIL)奖励编号DE-SE-SE-SE-0001003的能源改进。
摘要。本文在我的脑海中介绍了MQ(MQOM),这是一种基于求解二次方程多元系统(MQ问题)的难度的数字签名方案。MQOM已被列入NIST呼吁,以寻求额外的量词后签名方案。MQOM依赖于头部(MPCITH)范式的MPC来为MQ构建零知识证明(ZK-POK),然后通过Fiat-Shamir启发式将其转变为签名方案。基本的MQ问题是非结构化的,这是因为定义一个实例的二次方程系统是随机统一绘制的。这是多元加密策略中最困难,最研究的问题之一,因此构成了建立候选后量子加密系统的保守选择。为了有效地应用MPCITH范式,我们设计了一个特定的MPC协议来验证MQ实例的解决方案。与基于非结构化MQ实例的其他多元签名方案相比,MQOM实现了最短的签名(6.3-7.8 kb),同时保留非常短的公共钥匙(几十个字节)。其他多元签名方案基于结构化的MQ问题(不太保守),该问题要么具有大型公共密钥(例如uov)或使用最近提出的这些MQ问题的变体(例如mayo)。
抽象不可逆的逻辑与统一的量子进化不一致。通过经典测量模拟此类操作可能会导致干扰和高度资源需求。为了克服这些局限性,我们提出了协议,即利用耗散实现不可逆转的门操作所需的无政府进化。使用其他激发态,可能会衰减,我们设计了在最小稳定的希尔伯特空间上执行所需的门操作的有效衰减过程。这些以确定性和自主的方式运行,而无需进行测量。我们考虑了几种经典逻辑操作,例如OR,NOR和XOR Gates。朝着实验实现,我们讨论了量子点中可能的实现。我们的研究表明,不可逆转的逻辑操作可以在逼真的量子系统上有效地执行,并且耗散工程是获得非洲发展的必要工具。拟议的操作扩展了量子工程师的工具箱,并在NISQ算法和Quantum机器学习中具有有希望的应用。
随着采用压缩光的引力波探测器的出现,量子波形估计(通过量子力学探针估计时间相关信号)变得越来越重要。众所周知,量子测量的反作用限制了波形估计的精度,尽管这些限制原则上可以通过文献中的“量子非破坏”(QND)测量装置来克服。然而,严格地说,它们的实现需要无限的能量,因为它们的数学描述涉及从下方无界的哈密顿量。这就提出了一个问题,即如何用有限能量或有限维实现来近似非破坏装置。在这里,我们考虑基于“准理想时钟”的有限维波形估计装置,并表明由于近似 QND 条件而导致的估计误差随着维度的增加而缓慢减小,呈幂律。结果,我们发现用这个系统近似 QND 需要很大的能量或维数。我们认为,对于基于截断振荡器或自旋系统的设置,预计该结果也成立。