使用Raspberry Pi实时泳道检测自动驾驶汽车Umamaheswari Ramisetty 1,M。Grace Mercy 2,V。Nooka Raju 2,N。Jagadesh Babu 2,P。Ashok Kumar 3和Vempalle 3和Vempalle Rafi 4 1 Ecm 4 1 Ecm eCM,Vignan的Ecect of Information of Information of Information of Information of Technology,eec eec ecem ecem ecem eec。印度的Visakhapatnam 3 ECE,Vignan妇女工程研究所,印度Visakhapatnam,印度4号EEE系,JNTUA工程学院,印度Pulivendula,印度E-邮件:vempallerafi@gmail@gmail.com摘要摘要摘要包括智能世界,智能汽车和其他技术。智能车辆的开发必须能够检测和确定交通标志以确保交通安全。为了控制自动驾驶汽车的速度,环境感知至关重要。交通标志上列出的交通法规必须作为自动驾驶汽车的投入。但是,交通监管是自动驾驶汽车的基本因素之一,但是需要考虑更多的因素。在本文中,用于停车符号检测,交通符号检测的机器学习技术以及避免障碍物和距离计算的对象检测对于调节自动驾驶汽车的纵向速度起着至关重要的作用。停车标志在汽车接近时从相机的视野中消失,这使得在所需的距离距离距离距离的距离挑战。要确切地知道在哪里停止车辆,对停车线的位置的了解至关重要。避免障碍物和对象的检测是分析潜力的其他具有挑战性的因素。HAAR级联分类器方法是此处使用的优化方法。色调饱和值的特征灰度缩放空间具有更快的速度检测能力和低照明痛苦。使用设定基准的印度交通标志评估所提出的技术。所提出的方法提供了几乎80%的精度。关键字:巷道跟踪对象和标志标识,机器学习,图像处理,HAAR级联,自动驾驶汽车的控制。
图片引用 封面图片:Shuksan and Wildflowers,Sean Munson,根据 CC BY-NC 2.0 许可 章节标题图片:执行摘要 | 图片来源:Wendy Cole,华盛顿州鱼类和野生动物部第 1 部分 | 图片来源:215。来源:Dangerous...Dan,根据 CC BY-NC 2.0 第 2 部分许可 | 图片来源:Oliver Grah,Nooksack 印第安部落 NCRD 第 3 部分 | 图片来源:Lake Whatcom Reconveyance,华盛顿州自然资源部,公共第 4 部分 | 图片来源:Nooksack Ridge,Roy Luck,根据 CC BY-NC 2.0 第 5 部分许可 | 图片来源:Oliver Grah,Nooksack 印第安部落 NCRD 第 6 部分 | 图片来源:2018-11-20_03-35-46,Anna Hesser,根据 CC BY-NC 2.0 第 7 部分许可 |图片来源:海洋公园,Jonathan Sureau,根据 CC BY-NC 2.0 附录 A 获得许可 | 图片来源:Oliver Grah,Nooksack 印第安部落 NCRD 阿拉斯加黄柏 | 图片来源:Cupressus nootkatensis,S. Rae,根据 CC BY-NC 2.0 获得许可 西部红柏 | 图片来源:西部红柏,corey_caitlin,根据 CC BY-NC 2.0 获得许可 常绿越橘 | 图片来源:Vaccinium ovatum #4,James Gaither,根据 CC BY-NC 2.0 获得许可 黑熊 | 图片来源:黑熊,Jitze Couperus,根据 CC BY-NC 2.0 获得许可 黑尾鹿 | 图片来源:黑尾鹿,Mick Thompson,根据 CC BY-NC 2.0 获得许可 麋鹿 | 图片来源:Frosty Morning 麋鹿,Gregory Smith,根据 CC BY-NC 2.0 获得许可 山羊 |图片来源:山羊,Tjflex2,根据 CC BY-NC 2.0 附录 B 获得许可 | 图片来源:拉拉比州立公园的日落,Hollywata,根据 CC BY-NC 2.0 获得许可 高山 | 图片来源:贝克山冰川,OER 培训,根据 CC BY-NC 2.0 获得许可 亚高山 | 图片来源:Oliver Grah,努克萨克印第安部落 NCRD 森林 | 图片来源:剑蕨正在死去,Rochard Droker,根据 CC BY-NC 2.0 获得许可 河岸 | 图片来源:马蹄湾、努克萨克河、哈里特摩根湿地 | 图片来源:Oliver Grah,努克萨克印第安部落 NCRD 河口 | 图片来源:达克布什河口,Michael,根据 CC BY-NC 2.0 获得许可 海洋 | 图片来源:普吉特海湾,Michael B.,根据 CC BY-NC 2.0 获得许可
由于静摩擦,启动或“分离”扭矩可高达运行扭矩的两到三倍。如果负载水平移动,移动负载所需的力将与负载移动表面的摩擦系数成比例减小。此外,启动、停止和保持负载(惯性负载)所需的力由千斤顶提供。千斤顶尺寸应考虑所有这些力。如果应用需要串联驱动多个千斤顶,则第一个千斤顶应限制为额定最大输入扭矩的三倍,如所选特定千斤顶的千斤顶选择表中所列。对于多个高导程滚珠丝杠千斤顶或皮带/链条驱动千斤顶,请联系 Nook Industries 了解允许的输入扭矩值。串联驱动的多个千斤顶可能需要在降低的负载下运行。
