摘要 无人机图像中的车辆检测和识别是一个复杂的问题,已用于不同的安全目的。这些图像的主要挑战是从斜角捕获的,并带来了一些挑战,例如非均匀照明效果、退化、模糊、遮挡、能见度丧失等。此外,天气条件在引起安全问题方面起着至关重要的作用,并为收集的数据增加了另一个高水平的挑战。在过去的几十年里,人们采用了各种技术来检测和跟踪不同天气条件下的车辆。然而,由于缺乏可用数据,在大雪中检测车辆仍处于早期阶段。此外,还没有使用无人机 (UAV) 拍摄的真实图像在雪天检测车辆的研究。本研究旨在通过向科学界提供北欧地区不同环境和各种积雪条件下无人机拍摄的车辆数据来解决这一空白。数据涵盖不同的恶劣天气条件,如阴天降雪、低光照和低对比度条件、积雪不均、高亮度、阳光、新雪,以及温度远低于-0摄氏度。该研究还评估了常用物体检测方法(如 YOLOv8s、YOLOv5s 和 Faster RCNN)的性能。此外,还探索了数据增强技术,以及那些增强检测器性能的技术
Nordic 是使用简化源文件验证 (SDV) 的先驱,在其大多数临床试验中常规应用 50% 的 SDV。然而,高度手动的流程让 Nordic 的团队不堪重负:一旦受试者被归类为需要 SDV,记录就会在电子表格中进行颜色编码,监测员会使用电子表格手动指导谁和哪些数据需要验证。此外,Nordic 还面临着更大的挑战,即确保监测员按照计划执行 SDV。这种繁琐的手动流程不利于 Nordic 利用近期基于风险的监测监管指导的愿望。从简化监测转向真正的基于风险的监测,Nordic 可以将其 SDV 进一步降低至 15% 至 20%,这可以大幅节省成本,同时提高数据质量,符合 FDA 关于基于风险的监测的新指导方针。
摘要 无人机图像中的车辆检测和识别是一个复杂的问题,已用于不同的安全目的。这些图像的主要挑战是从斜角捕获的,并带来了一些挑战,例如不均匀的照明效果、退化、模糊、遮挡、能见度丧失等。此外,天气条件在引起安全问题方面起着至关重要的作用,并为收集的数据增加了另一个高水平的挑战。在过去的几十年里,人们采用了各种技术来检测和跟踪不同天气条件下的车辆。然而,由于缺乏可用数据,在大雪中检测车辆仍处于早期阶段。此外,还没有使用无人机 (UAV) 拍摄的真实图像在雪天检测车辆的研究。本研究旨在通过向科学界提供北欧地区不同环境和不同积雪条件下无人机拍摄的车辆数据来解决这一空白。数据涵盖不同的恶劣天气条件,如阴天降雪、低光照和低对比度条件、积雪不均、高亮度、阳光、新雪,以及温度远低于-0摄氏度。该研究还评估了常用物体检测方法(如 YOLOv8s、YOLOv5s 和 Faster RCNN)的性能。此外,还探索了数据增强技术,并提出了在此类场景中增强检测器性能的技术。代码和数据集将在 https://nvd.ltu-ai.dev 上提供
根据截至 2023 年第四季度末 (LTM) 的近期交易,北欧并购软件定价水平的中位 EV/Sales 倍数为 7.8 倍。对于 IT 服务,当前定价水平的中位 EV/EBITDA 为 9.4 倍。软件领域近期的几笔交易反映了对上市公司的收购出价(我们已纳入实际收购股份的相关数据)。
在北欧国家出售的电动汽车数量(EV)正在增加,因此,一旦达到生命终止(EOL),就需要设计一个安全有效的系统来收集,运输和处理电池。注定要回收的电池的重要步骤是预处理过程。在此过程中,电池被放电,可能会分解为其组成部分。今天的预处理过程主要是在今天手动进行的,例如在瑞典,德国,可能对操作员构成相当大的人体工程学和安全风险。该积极的项目旨在为Faroe群岛,格陵兰和冰岛的电动汽车中使用的EOL处理有效且安全的过程,包括与该工作相关的包装,存储,工具以及健康和安全方面。
从统计数据来看,北欧和波罗的海地区最脆弱的 HVAC 组件类型是架空线路,占所有故障的 61%(10 年平均值 64%)和所有 ENS 的 26%(10 年平均值 53%)。这一高比例可能是因为架空线路是输电网中使用最多、暴露程度最高的 HVAC 组件。尽管如此,每 100 公里线路的架空线路故障数趋势正在减少,如图 E.2 所示。2019 年,大多数 ENS 都是由电力变压器故障异常引起的。所有 ENS 中有 27% 是由电力变压器故障引起的,而只有 3% 的故障发生在电力变压器上。平均而言,电力变压器故障导致每年约 6% 的 ENS,而控制设备故障导致每年约 9% 的 ENS。 220-330 kV 控制设备和断路器以及 380-420 kV 电缆和电力变压器的故障趋势有所增加。
1 Liu,W.,Xie,S.-P.,Liu,Z。 &Zhu,J. 忽略了在温暖气候下倒塌的大西洋子午倾斜循环的可能性。 科学进步,7(2017)。 https://doi.org:10.1126/sciadv.1601666 2 Armstrong McKay,D。I.等。 超过1.5度C的全球变暖可能会触发多个气候转化点。 Science 377,EABN7950(2022)。 https://doi.org:10.1126/science.abn7950 3 Lenton,T。M.等。 全球临界点报告2023。 479(埃克塞特大学,埃克塞特,英国,2023年)。 4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。1 Liu,W.,Xie,S.-P.,Liu,Z。&Zhu,J.忽略了在温暖气候下倒塌的大西洋子午倾斜循环的可能性。科学进步,7(2017)。https://doi.org:10.1126/sciadv.1601666 2 Armstrong McKay,D。I.等。 超过1.5度C的全球变暖可能会触发多个气候转化点。 Science 377,EABN7950(2022)。 https://doi.org:10.1126/science.abn7950 3 Lenton,T。M.等。 全球临界点报告2023。 479(埃克塞特大学,埃克塞特,英国,2023年)。 4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。https://doi.org:10.1126/sciadv.1601666 2 Armstrong McKay,D。I.等。超过1.5度C的全球变暖可能会触发多个气候转化点。Science 377,EABN7950(2022)。https://doi.org:10.1126/science.abn7950 3 Lenton,T。M.等。 全球临界点报告2023。 479(埃克塞特大学,埃克塞特,英国,2023年)。 4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。https://doi.org:10.1126/science.abn7950 3 Lenton,T。M.等。全球临界点报告2023。479(埃克塞特大学,埃克塞特,英国,2023年)。 4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。479(埃克塞特大学,埃克塞特,英国,2023年)。4 IPCC。 气候变化2023:综合报告。 工作组,II和III的贡献对政府间气候变化的第六次评估报告。 184(IPCC,日内瓦,2023年)。 5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。4 IPCC。气候变化2023:综合报告。工作组,II和III的贡献对政府间气候变化的第六次评估报告。184(IPCC,日内瓦,2023年)。5 OECD。 气候临界点:有效政策行动的见解。 89(巴黎,2022年)。 6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。5 OECD。气候临界点:有效政策行动的见解。89(巴黎,2022年)。6 Van Westen,R。M.,Kliphuis,M。A. 和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。 科学进步(2024)。 https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。6 Van Westen,R。M.,Kliphuis,M。A.和Dijkstra,H。A.基于物理的预警信号表明AMOC正在倾斜课程。科学进步(2024)。https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。 自然攀登。 更改11,680-688(2021)。 https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。https://doi.org:10.1126/sciadv.adk1189 7 Boers,N。基于观察的早期训练信号,以崩溃,大西洋子午线翻转循环。自然攀登。更改11,680-688(2021)。https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。 千禧一代大西洋多年变化重建建议提示的临界点的预警信号。 nat Commun 13,5176(2022)。 自然556,191-196(2018)。 自然通讯11(2020)。 Oceanogr。https://doi.org:10.1038/s41558-021-01097-4 8 Michel,S。L. L.等。千禧一代大西洋多年变化重建建议提示的临界点的预警信号。nat Commun 13,5176(2022)。自然556,191-196(2018)。自然通讯11(2020)。Oceanogr。Oceanogr。https://doi.org:10.1038/s41467-022-32704-3 9 Ditlevsen,P。&Ditlevsen,S。警告即将发生的大西洋子午倾斜循环循环性质的警告(20233)。 https://doi.org:10.1038/s41467-023-39810-w 10 Caesar,L.,Rahmstorf,S.,Robinson,A. https://doi.org:10.1038/s41586-018-0006-5 11 Chemke,R.,Zanna,L。&Polvani,L。M.在北大西洋暖孔中识别人类信号。 https://doi.org:10.1038/s41467-020-15285-x 12 Benton,T。G.在农业经济中运行AMOC。 自然食品1,22-23(2020)。 https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。 (2024)。 https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:10.1038/s41467-022-32704-3 9 Ditlevsen,P。&Ditlevsen,S。警告即将发生的大西洋子午倾斜循环循环性质的警告(20233)。https://doi.org:10.1038/s41467-023-39810-w 10 Caesar,L.,Rahmstorf,S.,Robinson,A.https://doi.org:10.1038/s41586-018-0006-5 11 Chemke,R.,Zanna,L。&Polvani,L。M.在北大西洋暖孔中识别人类信号。 https://doi.org:10.1038/s41467-020-15285-x 12 Benton,T。G.在农业经济中运行AMOC。 自然食品1,22-23(2020)。 https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。 (2024)。 https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:10.1038/s41586-018-0006-5 11 Chemke,R.,Zanna,L。&Polvani,L。M.在北大西洋暖孔中识别人类信号。https://doi.org:10.1038/s41467-020-15285-x 12 Benton,T。G.在农业经济中运行AMOC。 自然食品1,22-23(2020)。 https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。 (2024)。 https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:10.1038/s41467-020-15285-x 12 Benton,T。G.在农业经济中运行AMOC。自然食品1,22-23(2020)。https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。 (2024)。 https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:10.1038/s43016-019-0017-x 13 Rahmstorf,S。(2024)。https://doi.org:/doi.org/10.5670/oceanog.2024.501https://doi.org:/doi.org/10.5670/oceanog.2024.501
到2050年,与千年之日相比,全球粮食生产将需要翻了一番。加速气候变化以及持续令人震惊的生物多样性丧失,栖息地强调了采取和实施有效的政策措施的急需需求,以防止进一步丧失有价值的遗传多样性。此外,维护和适当利用这些野生遗传资源可能有助于增强北欧植物育种,从而加强其竞争力。
摘要 斯德哥尔摩某岩石隧道施工期间,在喷浆完成一年后发现多处喷浆(喷射混凝土)渗漏段。因此,进行了调查,并在本文中介绍其结果。如此短时间内渗漏的量表明存在单侧水压和透水喷射混凝土。水压的原因可能是部分灌浆不成功,导致漏水段。透水喷射混凝土可能是养护不足和使用加速剂的综合结果,因此研究了现场养护的效果。在隧道中,共喷浆并在不同条件下养护了六块板。根据标准进行的测试结果表明,养护对机械强度的发展或水通过喷射混凝土的渗透没有显著影响。然而,这被认为是一个
10:35-11:00 Flash海报演示(2分钟/演示)BükeCelikdemir(德国Würzburg,德国),Sara Passerini(意大利罗马),Wen Xu(澳大利亚布里斯班,澳大利亚)(2海报)(2海报) (斯德哥尔摩,瑞典),libuse Janska(瑞典斯德哥尔摩),Yajie Yang(瑞典斯德哥尔摩),朱利安·科特(JulianKött)(德国汉堡)和丹·刘(Dan Liu)