∗通讯作者:Georg Graetz(Georg.graetz@nek.uu.se)。Moritz Johanning,JoyceKäser和Nick Niers提供了出色的研究帮助。我们感谢克里斯蒂安·拜耳(Christian Bayer),沃尔夫冈·道斯(Wolfgang Dauth),阿尔布雷希特·格里茨(Albrecht Glitz),伊娃·莫克(EvaMörk),迈克尔·奥伯(Michael Ober),奥斯卡·诺德斯特斯特(OskarNordströmSkans),丹尼尔·坦妮鲍姆(Daniel Tannenbaum),马丁·沃茨格(Martin Watzinger),Martin Watzinger,以及AEA,IAB,IAB,IAB,IAB,Liser,liser,liser,liser,eale,eale,zew,zew,zew和hohen和hohen和hohen inter and yhher, 评论。所有剩余的错误都是我们自己的。这项研究得到了德国联邦劳工和社会诉讼(授予号DKI.00.00016.20),FORTE赠款2021-01559,IZA协作研究赠款,莱布尼兹协会的IZA合作研究赠款,通过Leibniz Assopiagion通过Leibniz Assopsive fiabniz Assopsive fiabniz Assopsive oppraim of Leibniz Assprip opprabient opprip oplak of Labienway Counce of Heidelberg Heidelberg of Heidelberg(p56/p56) 314801和黄蜂赠款。
1914 年,西奥多·卡鲁扎 (Theodor Kaluza) 又在几年后提出这一理论。诺德斯特伦 (Nordström) 发展了引入额外空间维度的引力理论 [2]。在他的理论中,额外维度与电磁学耦合。卡鲁扎利用五维流形(四个空间维度和一维时间维度)[3],将爱因斯坦广义相对论与电磁学统一起来。这些引力与电磁学的统一假设空间有四个维度而不是三个,这为进一步探索四维空间假设提供了足够的动力。促使本文所述研究的另一个重要成果是埃尔温·马德隆 (Erwin Madelung) 于 1926 年获得的研究成果。他从无旋无粘流的流体动力学方程推导出薛定谔方程 [4]。尽管马德隆在他的解释中没有将物理空间视为流体,但推导表明薛定谔方程与无旋流动的无粘性流体方程之间存在联系。
摘要:利用最近提出的量子极值曲面构造方法,忽略反作用和灰体因子,计算了四维永恒Reissner-Nordström黑洞的Page曲线。没有岛,霍金辐射的熵随时间线性增长,这导致了永恒黑洞的信息悖论。通过极值化允许岛贡献的广义熵,我们发现岛延伸到了Reissner-Nordström黑洞视界之外。当考虑到岛的影响时,结果表明,在远离黑洞视界的给定区域,晚期霍金辐射的纠缠熵再现了Reissner-Nordström黑洞的Bekenstein-Hawking熵,并附加一个表示物质场影响的项。该结果与永恒黑洞辐射的纠缠熵的有限性相一致。这有助于在上述近似下解决当前情况下的黑洞信息悖论问题。
∗ 我们感谢 Niklas Amberg、Francesco Bianchi、Olivier Coibion、Thiemo Fetzer、Oskar Nordstr¨om Skans、Erik ¨Oberg、Evgenia Passari、Romain Ranci`ere、Paolo Surico、Ulf S¨oderstr¨om、Karl Walentin、Francesco Zanetti、Xin Zhang 以及乌普萨拉大学、波恩大学、那不勒斯费德里科二世大学和瑞典中央银行研讨会以及第五届民主与独裁政治经济学国际会议和不平等政治会议的与会者提供的宝贵意见和讨论。我们感谢 Fundac¸˜ao para a Ciˆencia e Tecnologia [项目参考 SFRH/BD/144581/2019 和 SFRH/BD/144820/2019]、德国卓越战略下德国研究基金会 [EXC 2126/1 - 390838866] 和 RTG 2281 - 不平等的宏观经济学的资金支持。本文中表达的观点仅代表作者本人,不应被视为反映瑞典央行的观点。† 波恩大学波恩经济学院和经济学系,ricardo.gabriel@uni-bonn.de。 ‡ 瑞典中央银行,货币政策部 - 研究,瑞典斯德哥尔摩 SE-103 37,mathias.klein@riksbank.se。§ 波恩经济研究生院和波恩大学经济学系,sofia.pessoa@uni-bonn.de。
以下人员参与了本课程大纲的审核和评论:Laura Albert、Reto Armuzzi、Árpád Beszédes、Armin Born、Géza Bujdosó、Renzo Cerquozzi、Sudeep Chatterjee、Seunghee Choi、Young-jae Choi、Piet de Roo、Myriam克里斯滕纳、让-巴蒂斯特·克鲁尼诺、国富丁,Erwin Engelsma, 范鸿飞, Péter Földházi Jr., Tamás Gergely, Ferdinand Gramsamer, Attila Gyúri, Matthias Hamburg, Tobias Horn, Jarosław Hryszko, Beata Karpinska, Joan Killeen, Rik Kochuyt, Thomas Letzkus, Chun Lihui, 刘海英, Gary里克·莫焦罗迪马塞利斯、伊姆雷·梅萨罗斯、Tetsu Nagata、Ingvar Nordström、Gábor Péterffy、Tal Pe'er、Ralph Pichler、Nishan Portoyan、Meile Posthuma、Adam Roman、Gerhard Runze、Andrew Rutz、Klaus Skafte、Mike Smith、Payal Sobti、Péter Sótér、Michael斯塔尔、克里斯·范贝尔、斯蒂芬妮·范迪克、罗伯特Werkhoven,Paul Weymouth,董鑫,Ester Zabar,克劳德·张。
到自由落体进入黑洞的质量的辐射[6-9])。同样,一个永恒的均匀加速边界(移动的镜子)显然不会向无穷远处的观察者发射能量,例如[10]。对于永恒均匀加速的微妙之处和非直观行为,目前尚未达成共识(有关选择真空态之间区别的可能理由,请参阅[11])。另一个非常有趣的方面[12]是渐近静态镜子保持幺正性和信息[13]。我们探索了一个融合均匀加速和零加速度这两种状态的模型,并直观地表明该系统可以在较长时间内以恒定功率辐射粒子。该系统不仅会保存信息,还会发射热能,守恒总辐射能量,并发射有限的总粒子,而不会发生红外发散。这个模型可以模拟黑洞完全蒸发。相关的探索并非史无前例。黑洞蒸发具有相近的加速类似物[14],包括移动镜像模型[4,15]。渐近无限加速轨迹[16],如史瓦西黑洞、雷斯纳-诺德斯特伦黑洞和克尔黑洞的加速边界对应关系[17-19],演化为永恒热平衡解[20]。渐近有限加速(渐近均匀加速)对应于极值黑洞[21-24],而渐近恒定速度(零加速度)可以提供描述黑洞残余模型(例如[25-31])的信息保留准热解。最近,人们特别关注以渐近零速度镜为特征的幺正完全黑洞蒸发模型(例如 [ 32 – 38 ])。纠缠熵 [ 39 ] 以及信息直接与镜轨迹相关 [ 40 ]。然而,远处的观察者探测到的是辐射功率,而不是熵。我们通过均匀加速的模拟情况研究了完全黑洞蒸发中这两者之间的联系。
出版物 Liebing AD, Rabe P, Krumbholz P, Zieschang C, Bischof F, Schulz A, Billig S, Birkemeyer C, Pillaiyar T, Garcia-Marcos M, Kraft R, Stäubert C (2025) 琥珀酸受体 1 信号转导相互依赖于亚细胞定位和细胞代谢。 FEBS J doi:10.1111/febs.17407 Röthe J, Kraft R , Ricken A, Kaczmarek I, Matz-Soja M, Winter K, Dietzsch AN, Buchold J, Ludwig MG, Liebscher I, Schöneberg T, Thor D (2024) 小鼠粘附 GPCR GPR116/ADGRF5 在胰岛调节中具有双重功能生长抑素释放和胰岛发育。共同生物学7:104。 Kaczmarek I、Wower I、Ettig K、Kuhn C、Kraft R、Landgraf K、Körner A、Schöneberg T、Horn S、Thor D (2023) 使用创新的 RNA-seq 数据库 FATTLAS 识别参与脂肪组织功能的 GPCR。iScience 26:107841。Peters A、Rabe P、Liebing AD、Krumbholz P、Nordström A、Jäger E、Kraft R、Stäubert C (2022) 羟基羧酸受体 3 和 GPR84 – 两种在先天免疫细胞中具有相反功能的代谢物感应 G 蛋白偶联受体。Pharmacol Res 176:106047。 Rabe P、Liebing AD、Krumbholz P、Kraft R、Stäubert C (2022) 琥珀酸受体 1 抑制对谷氨酰胺上瘾的癌细胞的线粒体呼吸。Cancer Lett 526:91-102。Peters A、Rabe P、Krumbholz P、Kalwa H、Kraft R、Schöneberg T、Stäubert C (2020) 羟基羧酸受体 3 和 G 蛋白偶联受体 84 的自然偏向信号传导。Cell Commun Signal 18:31。Röthe J、Kraft R、Schöneberg T、Thor D (2020) 探索原发性胰腺胰岛中的 G 蛋白偶联受体信号传导。Biol Proced Online 22:4。 Stegner D, Hofmann S, Schuhmann MK, Kraft P, Herrmann AM, Popp S, Höhn M, Popp M, Klaus V, Post A, Kleinschnitz C, Braun A, Meuth SG, Lesch KP, Stoll G, Kraft* R , Nieswandt* B (2019) Orai2 介导的电容性 Ca 2+ 条目的丢失具有神经保护作用急性缺血性中风。笔画 50:3238-3245。 Röthe* J、Thor* D、Winkler J、Knierim AB、Binder C、Huth S、Kraft R、Rothemund S、Schöneberg T、Prömel S (2019) 粘附 GPCR 卵白蛋白参与调节胰岛素释放。 Cell Rep 26:1573-1584。Kraft R (2015) 神经系统中的 STIM 和 ORAI 蛋白。Channels (Austin) 9:235-243。Michaelis M、Nieswandt B、Stegner D、Eilers J、Kraft R (2015) STIM1、STIM2 和 Orai1 调节钙池操纵的钙内流和小胶质细胞的嘌呤能激活。Glia 63:652-663。Kallendrusch S、Kremzow S、Nowicki M、Grabiec U、Winkelmann R、Benz A、Kraft R、Bechmann I、Dehghani F、Koch M (2013) G 蛋白偶联受体 55 配体 L-α-溶血磷脂酰肌醇在兴奋毒性损伤后发挥小胶质细胞依赖性神经保护作用。 Glia 61:1822-1831。Wegner F、Kraft R、Busse K、Härtig W、Leffler A、Dengler R、Schwarz J(2012 年)分化的人类中脑衍生神经祖细胞表达含有 α2β 亚基的兴奋性士的宁敏感甘氨酸受体。PLoS One 7:e36946。