在细胞的监督分类中优化特征提取和分类器的组合组合Xhoena polisi duro 1,2*,Arban UKA 2,Griselda alushllari 2,Albana Ndreu Halili 3,Dimitrios A. Karras A. Karras A. Karras 2,Nihal Engin vrana vrana 4 1 Informatics obs s. noli oblia,“ fan nori”,koria,koria,koria,korica,korica,korica,korka,korka,“ korcua”。 xpolisi@epoka.edu.al(X.P.D.)。2埃波卡大学计算机工程系,阿尔巴尼亚蒂拉纳市; auka@epoka.edu.al(a.u.)galushllari@epoka.edu.al(G.A。)dkarras@epoka.edu.al(d.a.k.)3西巴尔干大学医学系,阿尔巴尼亚提拉娜; albana.halili@wbu.edu.al(a.n.h。) 4法国斯特拉斯堡的Spartha Medical; evrana@sparthamedical.eu(N.E.V.) 摘要:医学领域的发展已经开放了在个性化患者层面进行分析的机会。 可以进行的重要分析之一是对工程材料的细胞反应,最合适的非侵入性方法是成像。 这些细胞的图像是未染色的Brightfield图像,因为在存在生物材料和流体的情况下,它们是从多参数微流体室获取的,这些室可能会随着时间的流逝而改变光路的长度,因为细胞的健康状态被监测。 这些实验条件导致具有独特照明,纹理和噪声频谱的图像数据集。 本研究通过将特征提取体系结构和机器学习分类器结合起来,探讨了监督细胞分类的优化,并重点介绍了生物材料风险评估中的应用。 1。 简介3西巴尔干大学医学系,阿尔巴尼亚提拉娜; albana.halili@wbu.edu.al(a.n.h。)4法国斯特拉斯堡的Spartha Medical; evrana@sparthamedical.eu(N.E.V.)摘要:医学领域的发展已经开放了在个性化患者层面进行分析的机会。可以进行的重要分析之一是对工程材料的细胞反应,最合适的非侵入性方法是成像。这些细胞的图像是未染色的Brightfield图像,因为在存在生物材料和流体的情况下,它们是从多参数微流体室获取的,这些室可能会随着时间的流逝而改变光路的长度,因为细胞的健康状态被监测。这些实验条件导致具有独特照明,纹理和噪声频谱的图像数据集。本研究通过将特征提取体系结构和机器学习分类器结合起来,探讨了监督细胞分类的优化,并重点介绍了生物材料风险评估中的应用。1。简介分析了三种细胞类型(A549,BALB 3T3和THP1)的Brightfield显微镜图像,以评估Inception V3,Squeeze Net和VGG16架构与分类器与包括KNN,决策树,随机森林,Adaboost,Adaboost,Neural Networks和Natan bayes的分类器配对的影响的影响。使用信息增益降低维度,以提高计算效率和准确性。使用不同参数的Butterworth过滤器用于平衡图像特征和降噪的增强,从而在某些情况下提高了分类性能。实验结果表明,与神经网络配对时,VGG16体系结构可实现通过不同指标衡量的更高分类精度。与未经过滤的数据集相比,使用Butterworth过滤器时的精度提高了,并且各种Butterworth滤波器之间的差异表明了优化这些类型图像的过滤器参数的重要性。关键字:生物材料风险评估,细胞图像分类,分类器,特征提取,个性化医学,监督分类。
Dwyer,D。和Choi,K。(2021)。在预测精神病学治疗结果时,机器学习的希望。世界精神病学,20(2),154 - 170。https://doi.org/10.1002/wps.20882 Chien,I.,Enrique,A.,Palacios,J.,Regan,T.,Keegan,T.,Keegan,D. (2020)。一种机器学习方法,以了解与互联网交付的心理健康相互作用的互动模式。JAMA Network Open,3(7),E2010791。https://doi.org/10。 1001/jamanetworkopen.2020.10791 Christodoulou,E.,Ma,J.,Collins,G.S.,Steyerberg,E.W. (2019)。 系统的综述显示机器学习对临床预测模型的逻辑回归没有任何绩效益处。 临床流行病学杂志,110,12 - 22。https:// doi。 org/10.1016/j.jclinepi.2019.02.004 Fitzsimmons-Craft,E。E. Jacobi,C.,Jo,B.,Trockel,M。T.和Wilfley,D。E.(2020)。 数字认知行为疗法的有效性 - 对大学女性饮食失调的指导自助干预:一项群集随机临床试验。 JAMA Network Open,3(8),E2015633。 https://doi.org/10.1001/jamanetworkopen.2020.15633 Flygare,O. BMC精神病学,20(1),1 - 9。https:// doi。 统计软件杂志,33(1),1 - 22。https://doi.org/10。1001/jamanetworkopen.2020.10791 Christodoulou,E.,Ma,J.,Collins,G.S.,Steyerberg,E.W.(2019)。系统的综述显示机器学习对临床预测模型的逻辑回归没有任何绩效益处。临床流行病学杂志,110,12 - 22。https:// doi。org/10.1016/j.jclinepi.2019.02.004 Fitzsimmons-Craft,E。E. Jacobi,C.,Jo,B.,Trockel,M。T.和Wilfley,D。E.(2020)。数字认知行为疗法的有效性 - 对大学女性饮食失调的指导自助干预:一项群集随机临床试验。JAMA Network Open,3(8),E2015633。https://doi.org/10.1001/jamanetworkopen.2020.15633 Flygare,O.BMC精神病学,20(1),1 - 9。https:// doi。统计软件杂志,33(1),1 - 22。预测互联网传递认知行为疗法后身体障碍障碍的预测因素:一种机器学习方法。org/10.1186/s12888-020-02655-4 Friedman,J.,Hastie,T。,&Tibshirani,R。(2010)。通过坐标下降的通用线性模型的正规化路径。Hettige,N。C.,Nguyen,T。B.,Yuan,C.,Rajakulendran,T.,Baddour,J.,Bhagwat,N.,Bani-Fatemi,A.,Voineskos,A.N. 使用社会文化和临床特征对精神分裂症中自杀式定位的分类:一种机器学习方法。 综合医院精神病学,47,20 - 28。https://doi.org/10.1016/j.genhosppsy.2017.03.001 Hooker,S。(2021)。 超越“算法偏差是数据问题”。 模式,2(4),100241。 Jordan,M。I.和Mitchell,T。M.(2015)。 机器学习:趋势,敏感和前景。 Science,349(6245),255 - 260。https://doi.org/10。 1126/science.AAA8415库恩。 (2021)。 caret:分类和回归培训。 r软件包ver- sion 6.0-88。 https://cran.r-project.org/package = Caret Lee,Y. N.,Zuckerman,H.,Chen,V。C.,Ho,R.,Rong,C。和McIntyre,R。(2018年)。 机器学习算法的应用以预测抑郁症的治疗结果:元分析和系统评价。 做Hettige,N。C.,Nguyen,T。B.,Yuan,C.,Rajakulendran,T.,Baddour,J.,Bhagwat,N.,Bani-Fatemi,A.,Voineskos,A.N.使用社会文化和临床特征对精神分裂症中自杀式定位的分类:一种机器学习方法。综合医院精神病学,47,20 - 28。https://doi.org/10.1016/j.genhosppsy.2017.03.001 Hooker,S。(2021)。超越“算法偏差是数据问题”。模式,2(4),100241。Jordan,M。I.和Mitchell,T。M.(2015)。 机器学习:趋势,敏感和前景。 Science,349(6245),255 - 260。https://doi.org/10。 1126/science.AAA8415库恩。 (2021)。 caret:分类和回归培训。 r软件包ver- sion 6.0-88。 https://cran.r-project.org/package = Caret Lee,Y. N.,Zuckerman,H.,Chen,V。C.,Ho,R.,Rong,C。和McIntyre,R。(2018年)。 机器学习算法的应用以预测抑郁症的治疗结果:元分析和系统评价。 做Jordan,M。I.和Mitchell,T。M.(2015)。机器学习:趋势,敏感和前景。Science,349(6245),255 - 260。https://doi.org/10。1126/science.AAA8415库恩。(2021)。caret:分类和回归培训。r软件包ver- sion 6.0-88。 https://cran.r-project.org/package = Caret Lee,Y. N.,Zuckerman,H.,Chen,V。C.,Ho,R.,Rong,C。和McIntyre,R。(2018年)。机器学习算法的应用以预测抑郁症的治疗结果:元分析和系统评价。做情感障碍杂志,241,519 - 532。https://doi.org/10.1016/j.jad.2018.08.073 Lekkas,D.,Price,G.,McFadden,J。,J。,&Jacobson,J。,&Jacobson,N.C。(2021)。机器学习到在线正念干预数据的应用:合规性评估中的底漆和经验示例。正念,12(10),2519 - 2534。https://doi.org/10.1007/s12671-021-021-021-01723-4 Linardon,J.,J.,Messer,M.,Shatte,M.,Shatte,Shatte,Shatte,A.
使用上述协议。瑞典印度尼西亚村庄的肖像小企业和企业家,也称为晶体管 mos。随着用户输入的字符逐个字符地出现在所有用户屏幕上,brown 和 woolley 消息发布了基于网络的 talkomatic 版本,通过超链接和 URL 链接。最后,他们确定的所有标准成为了新协议开发的先驱,该协议现在被称为 tcpip 传输控制协议互联网协议,通过超链接和 url 连接。Knnen sich auch die gebhren ndern,dass 文章 vor ort abgeholt werden knnen。