1. 本标准已获准供国防部 (DoD) 的所有部门和机构使用。 2. 本标准的某些条款受国际标准化协议约束。当提议对本标准进行修正、修订或取消,而该等修正、修订或取消将影响或违反有关国际协议时,制定活动将通过国际标准化渠道采取适当的协调行动,包括部门标准化办公室(如有必要)。 3. 本标准中的表格很多;因此,它们位于第 6 节末尾,附录和索引之前。 4. 除非特别说明,所有对政府文件和非政府出版物的引用均应参考该文件或出版物的最新版本或修订版。 5. 对 QAR 的引用包括指定执行这些职能的军事人员。 6. 关于与上一版本相比的更改,由于更改程度较大,本次修订未使用边注来标识与上一版本相比的更改。 7. 有关本文件的评论、建议或问题应发送至 DLA Energy DQA,地址:Room 2843, DLA Headquarters Building, 8725 John J. Kingman Rd, Fort Belvoir VA, 22060-6222,或将您的评论发送至 Lead Standardization Office,地址为 DSCC.Standardization@dla.mil。由于联系信息可能会发生变化,您可能需要验证此地址信息的时效性
本书讨论了基于模型的方法如何改善软件专业人员的日常实践。这被称为模型驱动软件工程 (MDSE) 或简称为模型驱动工程 (MDE)。各种定量和定性研究表明,MDSE 实践已被证明可以提高软件开发的效率和效果。预计在不久的将来,软件行业对 MDSE 的采用将呈指数级增长,例如由于软件开发和业务分析的融合。本书的目的是为您提供一个敏捷而灵活的工具,向您介绍 MDSE 的世界,从而让您快速了解它的基本原理和技术,并根据您的需要选择合适的 MDSE 工具,这样您就可以立即开始从 MDSE 中受益。本书面向多种读者,包括:专业人士、首席技术官、首席信息官和团队经理,他们需要对这个问题有一个全面的了解,以便在为公司或团队选择最佳开发技术时做出适当的决定;软件分析师、开发人员或设计人员,他们希望使用 MDSE 来提高日常工作效率,无论是通过应用基本建模技术和符号,还是通过定义新的领域特定建模语言并在软件工厂中应用端到端 MDSE 实践;以及学术教师和学生,以解决 MDSE 的本科和研究生课程。在广告
表 1.1 – 工作文件清单 8 表 2.1 – 已审查的先前调查清单 9 表 3.1 – 选定位置的峰值设计洪水水位 (m AHD) 15 表 4.1 – 当前洪水预警和响应的组织职责 22 表 4.2 – 格拉夫顿 2001 年 3 月洪水的洪水预警系统评估 23 表 4.3 – 需要审查的洪水计划 26 表 4.4 – 房屋加高的优点和缺点 35 表 4.5 – 克拉伦斯河下游的房屋加高选项 38 表 4.6 – 克拉伦斯河下游的房屋加高建议 39 表 4.7 – 受洪水影响的住宅的初步估计 41 表 4.8 – 第 149 节的建议措辞符号 50 表 5.1 – 格拉夫顿堤坝漫溢顺序(百年一遇洪水) 56 表 5.2 – 格拉夫顿洪峰水位(m AHD) 57 表 5.3 – 格拉夫顿堤坝抬高导致的洪水水位上升 61 表 5.4 – 格拉夫顿记录的积水水位 63 表 5.5 – 南格拉夫顿堤坝漫溢顺序(百年一遇洪水) 66 表 5.6 – 南格拉夫顿洪峰水位(m AHD) 67 表 5.7 – 南格拉夫顿和格拉夫顿堤坝抬高导致的洪水水位上升 70 表 5.8 – 根据漫溢研究得出的麦克莱恩设计洪水水位 73 表 5.9 – 布拉什格罗夫洪泛区管理方案79 表 5.10 – 堤坝方案经济评估修订版 81 表 6.1 – 建议的洪泛区风险管理计划 96
XML和Web数据。单元I [05]最大标记:08简介:数据库系统应用和目的,DBMS,数据库用户的特征,DBMS的1层,2层和3层体系结构以及其优势,数据库体系结构的水平,数据模型,数据模型,数据模型,数据独立性,数据独立性,数据独立性,角色和DBA的责任感。单位-II [10]最大标记:12个数据库设计和E-R模型:数据库设计的概述,建模概念,ER图,减少对关系模式,扩展的ER特征,建模的替代符号,用于建模,心脏限制,使用原子依赖性,BCCNF和4NF,3NF和4NF,3NF和4N。单位-III [12]最大标记:20个关系数据库:关系数据库,数据库模式,密钥,模式图,关系查询语言,关系操作的结构。SQL的概述,SQL数据定义,SQL查询的基本结构,基本操作,集合操作,无效值,汇总功能,嵌套的子查询,数据库的修改。加入表达式,视图,交易,完整性约束,SQL数据类型和模式,授权,从编程语言访问SQL,Dynamic SQL和SQL CLI的概述。功能和过程,触发器。关系代数基本和扩展操作。元组和域关系计算。单位IV [10]最大标记:22交易管理和查询处理:交易概念,模型,存储结构,原子能和耐用性,隔离,隔离水平,查询处理的概述,测量查询成本,选择操作,分类,加入操作,连接操作,其他操作,其他表达和表达评估。查询优化的概述,关系表达的转换,评估计划的选择。
该硕士学位论文在量子信息理论(QIT)领域,可以被视为量子纠缠的介绍。纠缠是量子力学的关键非经典特征,也是几种现代应用程序的资源,包括量子cryp- forgraphy,量子计算和量子通信。论文探讨了QIT与几何图形,特别是凸集的牢固联系,并通过对欧几里得和希尔伯特空间和运算符的功能分析。基本的定义和概念是在数学框架中引入的,然后与量子信息理论和量子力学中的字段特定符号和概念有关。在开始时以下惯例和概念并进行了审查:bra-ket符号,希尔伯特空间,张量产品,操作员,或(指定基础后)基质代数,以及论文的关键概念,国家的概念(即,痕量的痕迹痕迹)或密度矩阵。一组国家有两个基本二分法。第一个二分法是在复杂的希尔伯特空间中的单位矢量和纯状态统计型的混合状态的纯状状态之间。引入了希尔伯特空间的张量和部分迹线上多方状态的概念。第二次二分法,涉及两分状态,位于可分离状态(即产物态的凸组合)及其补体之间,即纠缠状态。通常会方便地掉落痕量条件并考虑阳性半有限矩阵而不是凸状状态集的锥。CHOI同构通过将作用于矩阵或操作员代数的(超级)操作员与作用于双分部分希尔伯特空间的Choi矩阵有关的(超级)操作员在论文中起着核心作用。在指定基础中choi同构等于
表 1.1 – 工作文件清单 8 表 2.1 – 已审查的先前调查清单 9 表 3.1 – 选定位置的峰值设计洪水水位 (m AHD) 15 表 4.1 – 当前洪水预警和响应的组织职责 22 表 4.2 – 格拉夫顿 2001 年 3 月洪水的洪水预警系统评估 23 表 4.3 – 需要审查的洪水计划 26 表 4.4 – 房屋加高的优点和缺点 35 表 4.5 – 克拉伦斯河下游的房屋加高选项 38 表 4.6 – 克拉伦斯河下游的房屋加高建议 39 表 4.7 – 受洪水影响的住宅的初步估计 41 表 4.8 – 第 149 节注释的建议措辞50 表 5.1 – 格拉夫顿堤坝漫溢顺序(百年一遇洪水) 56 表 5.2 – 格拉夫顿洪峰水位(m AHD) 57 表 5.3 – 格拉夫顿堤坝抬高导致的洪水水位上升 61 表 5.4 – 格拉夫顿记录的积水水位 63 表 5.5 – 南格拉夫顿堤坝漫溢顺序(百年一遇洪水) 66 表 5.6 – 南格拉夫顿洪峰水位(m AHD) 67 表 5.7 – 南格拉夫顿和格拉夫顿堤坝抬高导致的洪水水位上升 70 表 5.8 – 根据漫溢研究得出的麦克莱恩设计洪水水位 73 表 5.9 – 布拉什格罗夫洪泛区管理方案 79表 5.10 – 修订后的堤坝方案经济评估 81 表 6.1 – 建议的洪泛区风险管理计划 96
训练高准确的3D检测器需要使用7个自由度的大规模3D注释,这是既易于且耗时的。因此,提出了点符号的形式,为3D检测中的实践应用提供了重要的前景,这不仅更容易且价格便宜,而且为对象定位提供了强大的空间信息。在本文中,我们从经验中发现,仅适应其3D形式并非遇到两个主要的瓶颈是不算气的:1)它未能在模型中编码强3D,而2)它由于极端的Spars sparsity而产生了低质量的pseudo pseudo Labels。为了克服这些挑战,我们引入了Point-Detr3D,这是一个弱小的半监督3D检测的教师学生框架,旨在在限制的实例注释预算中充分利用点的监督。与点 - dive不同,该点仅通过点编码器编码3D位置信息,我们提出了一个显式的位置查询初始化策略,以增强先验性。考虑到教师模型产生的遥远区域的伪标签质量低时,我们通过通过新型的跨模式可变形ROI融合(D-ROI)结合了密集的图像数据来增强探测器的感知。此外,提出了一种创新的点指导的自我监督学习技术,即使在学生模型中,也可以完全利用点的先验。与代表性的Nuscenes数据集进行了广泛的实验,证明了我们的观点 - DETR3D与前所未有的作品相比获得了显着改善。值得注意的是,只有5%的标记数据,Point-detr3d的完全超级可见的对应物的性能超过90%。
俄罗斯海事船级社远洋船舶入级与建造规则已按照既定的批准程序获得批准,并于 2020 年 1 月 1 日生效。本规则的现行版本以 2019 年版本为基础,并考虑了发布前立即制定的修订。已考虑国际船级社协会 (IACS) 的统一要求、解释和建议以及国际海事组织 (IMO) 的相关决议。规则分为以下部分发布:第 I 部分“入级”;第 II 部分“船体”;第 III 部分“设备、布置和舾装”;第 IV 部分“稳性”;第 V 部分“分舱”;第 VI 部分“防火”;第 VII 部分“机械装置”;第 VIII 部分“系统和管道”;第 IX 部分“机械”;第 X 部分“锅炉、热交换器和压力容器”;第 XI 部分“电气设备”;第十二部分“制冷装置”;第十三部分“材料”;第十四部分“焊接”;第十五部分“自动化”;第十六部分“纤维增强塑料船舶的结构和强度”;第十七部分“船舶结构和操作特性附加标志中的区别标记和描述性符号”;第十八部分“集装箱船和主要用于运载集装箱的船舶结构的附加要求”。本部分内容与 IACS UR S11A“纵向强度”相同
俄罗斯海事船级社远洋船舶入级与建造规则已按照既定的批准程序获得批准,并于 2020 年 1 月 1 日生效。本规则的现行版本以 2019 年版本为基础,并考虑了发布前立即制定的修订。已考虑国际船级社协会 (IACS) 的统一要求、解释和建议以及国际海事组织 (IMO) 的相关决议。规则分为以下部分发布:第 I 部分“入级”;第 II 部分“船体”;第 III 部分“设备、布置和舾装”;第 IV 部分“稳性”;第 V 部分“分舱”;第 VI 部分“防火”;第 VII 部分“机械装置”;第 VIII 部分“系统和管道”;第 IX 部分“机械”;第 X 部分“锅炉、热交换器和压力容器”;第 XI 部分“电气设备”;第十二部分“制冷装置”;第十三部分“材料”;第十四部分“焊接”;第十五部分“自动化”;第十六部分“纤维增强塑料船舶的结构和强度”;第十七部分“船舶结构和操作特性附加标志中的区别标记和描述性符号”;第十八部分“集装箱船和主要用于运载集装箱的船舶结构的附加要求”。本部分内容与 IACS UR S11A“纵向强度”相同
俄罗斯海事船级社远洋船舶入级与建造规则已按照既定的批准程序获得批准,并于 2020 年 1 月 1 日生效。本规则的现行版本以 2019 年版本为基础,并考虑了发布前立即制定的修订。已考虑国际船级社协会 (IACS) 的统一要求、解释和建议以及国际海事组织 (IMO) 的相关决议。规则分为以下部分发布:第 I 部分“入级”;第 II 部分“船体”;第 III 部分“设备、布置和舾装”;第 IV 部分“稳性”;第 V 部分“分舱”;第 VI 部分“防火”;第 VII 部分“机械装置”;第 VIII 部分“系统和管道”;第 IX 部分“机械”;第 X 部分“锅炉、热交换器和压力容器”;第 XI 部分“电气设备”;第十二部分“制冷设备”;第十三部分“材料”;第十四部分“焊接”;第十五部分“自动化”;第十六部分“纤维增强塑料船舶的结构和强度”;第十七部分“船舶结构和操作特性船级符号中的识别标记和描述性符号”;第十八部分“集装箱船和主要用于运载集装箱货物的船舶结构的附加要求”。本部分的文本与 IACS UR S11A“纵向强度
