引言:急性髓细胞性白血病(AML)是由各种遗传改变引起的高度异质性恶性肿瘤,其特征是骨髓中未成熟的髓样爆炸的积累(BM)。AML细胞的这种异常生长破坏了正常的造血并改变BM微环境成分,从而建立了对白血病的利基支持。骨髓基质细胞(BMSC)在产生BM壁ni的基本要素(包括脂肪细胞和成骨细胞)方面起着关键作用。动物模型表明,BM微环境是由AML细胞显着重塑的,AML细胞将BMSC偏向于无效的成骨分化,并积累了骨化剂。然而,对AML细胞影响成骨的机制知之甚少。
背景:肠脑轴 (GBA) 促进中枢神经系统和肠神经系统之间的相互交流。GBA、Notch 和脑癌之间的联系是一个复杂而错综复杂的主题,值得进一步探索。脑癌具有多方面的病理生理学和结构,使得从诊断到治疗的过程充满挑战。Notch 参与信号通路可能与脑癌和肠脑轴有关。目的:本研究旨在研究肠脑轴 (GBA)、Notch 信号和脑癌(特别是神经胶质瘤)之间的复杂相互作用。材料和方法:本研究是使用多个搜索引擎(包括 PubMed、ProQuest 和 Cambridge Core)进行的范围界定审查,时间跨度为 2018 年至 2023 年。对收集的材料进行了筛选并随后进行了分析。结果:肠脑轴的存在是一个值得深入探索的有趣话题。Notch 与肠脑轴之间的复杂关系可能为脑癌的发病机制提供有价值的见解。文献综述确定了两篇出版物,并对其进行了更详细的分析。肠脑轴 (GBA) 是指中枢神经系统和肠神经系统之间的双向通讯网络,调节胃肠道功能。Notch 信号通路的鉴定表明其在脑肿瘤发展中的作用。结论:肠脑轴、Notch 和脑癌之间的联系显而易见。作为一种信号传导机制,Notch 通路与脑癌有关,肠脑轴也与之相关。这种相互关联的关系有可能揭示诊断和治疗的新途径,值得进一步研究。
1个生物科学学院,谢菲尔德大学,谢菲尔德,英国2 2神经科学研究所,谢菲尔德,谢菲尔德,谢菲尔德,英国,英国,大学生物学和癌症大学3,出生缺陷研究中心,UCL GOS儿童健康研究所,UCL GOS儿童健康研究所,UK 4 Cell and Developmence of Dundee and Dundee of Dundee,Dundee of Dundee,Dundee of Dundee,Dundee of Dundee and Dundee of Dunderecience of Dundee and Dundee of Dundee of Dunderecience of Dundee and Biocience of Dundereci英国谢菲尔德谢菲尔德·哈勒姆大学化学 *作者(f.cooper@sheffield.ac.uk和a.tsakiridis@sheffield.ac.ac.uk)1个生物科学学院,谢菲尔德大学,谢菲尔德,英国2 2神经科学研究所,谢菲尔德,谢菲尔德,谢菲尔德,英国,英国,大学生物学和癌症大学3,出生缺陷研究中心,UCL GOS儿童健康研究所,UCL GOS儿童健康研究所,UK 4 Cell and Developmence of Dundee and Dundee of Dundee,Dundee of Dundee,Dundee of Dundee,Dundee of Dundee and Dundee of Dunderecience of Dundee and Dundee of Dundee of Dunderecience of Dundee and Biocience of Dundereci英国谢菲尔德谢菲尔德·哈勒姆大学化学 *作者(f.cooper@sheffield.ac.uk和a.tsakiridis@sheffield.ac.ac.uk)
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2024 年 11 月 26 日发布。;https://doi.org/10.1101/2024.04.01.587562 doi:bioRxiv 预印本
合成缺口受体(Synnotch)系统是一个多功能平台,可诱导基因转录,以响应细胞外信号。但是,由于特定的激活要求,其应用主要仅限于膜结合目标。尚不清楚同步性同步性也可以靶向细胞外蛋白聚集体,例如阿尔茨海默氏病(AD)中的淀粉样蛋白β(Aβ)。为了解决这个问题,我们设计了一个靶向Aβ的同步受体,该受体控制着脑瘤的嵌合性人小鼠版本(Leqembi®)或aducanumab(Aduhelm®),两者均为FDA批准的AD抗体。我们证明了表达该同步系统的NIH 3T3细胞通过合成和分泌aducanumab或lecanemab来检测并响应细胞外Aβ聚集体。这些发现扩大了同步的潜在应用,将其靶标超出了膜结合的蛋白质,将其范围扩大到细胞外蛋白质聚集体,从而在该科学领域为研究提供了明显的好处。
BE,Pengpenng等。 天然医学(2014年)江,Chunhui等。 frontis in Endocrynology(2015)Jiang,Chunhui等。 分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)天然医学(2014年)江,Chunhui等。 frontis in Endocrynology(2015)Jiang,Chunhui等。 分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)frontis in Endocrynology(2015)Jiang,Chunhui等。 分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)肥胖30(2022)
引入骨骼的再生取决于各种因素,包括骨骼干/祖细胞(SSPC)及其与骨膜和骨髓小裂细胞中其他细胞种群的相互作用。裂缝会损害骨骼和周围的组织,导致出血,血肿形成以及hema-拓扑细胞流向骨折部位。这些事件导致SSPC和内皮细胞(EC)的扩展。我们实验室和其他小组的先前研究表明,骨膜是导致愈合的主要原因(1-3)。最近由Liu等人发表的遗传谱系追踪研究报道了支持骨膜作为骨折愈合的主要促进者。(4)。控制组织修复的关键事件是SSPC是否发生增殖或分化。在骨折愈合的早期阶段,自分泌和旁分泌信号将SSPC的命运直接降低对软骨和成骨谱系的承诺。然而,控制细胞异质愈伤组织中SSPC激活的分子途径和细胞对细胞信号传导机制仍然鲜为人知。Notch信号传导是一种保守的途径,在发育,稳态和组织再生中具有作用(5)。该途径在维持祖细胞池和控制各种细胞类型的成熟谱系中的分化中起着重要作用(6)。Notch信号传导的作用是分歧和温度控制的,取决于细胞谱系成熟的特定组织和阶段(5,7)。但是,Notch也Notch信号传导取决于Notch配体(JAGGED 1和2 [JAG1和-2]以及DELTA样配体1、3和4 [DLL1,-3和-4])与Notch受体(Notch1-4)(Notch1-4)(5,6)。在接收配体结合后,受体的构象变化促进了Notch受体细胞内结构域(NICD)的γ-分泌酶切割。然后,NICD与重组信号结合蛋白结合,用于免疫球蛋白κJ区(RBPJκ)和类似策划的蛋白,诱导基因转构。此信号序列通常称为典型的Notch信号传导。
Lena Tveriakhina,1,8 Gustavo Scanavachi,2,3,3 Emily D. Egan,1 Ricardo Bango da Cunha Correia,2,3 Alexandre P. Martin,1 Julia M. Rogers,1 Jodemy S. Jeremy S. Yodh,5 Jon C.美国马萨诸塞州波士顿,马萨诸塞州波士顿的Blavatnik研究所生物化学和分子药理学系美国2115年2月2日 Physics, Harvard University, Cambridge, MA 02138, USA 6 Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA 7 Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA 8 These authors contributed equally 9 Lead contact *Correspondence: kirchhausen@crystal.harvard.edu (T.K.),stephen_blacklow@hms.harvard.edu(s.c.b.)https://doi.org/10.1016/j.devcel.2024.03.021
人脐带间充质干细胞(HUCMSC)表现出有效的自我更新和多节分区分特征。,由于其治疗潜力,例如在组织修复,再生,免疫调节,抗炎,血管生成,伤口愈合,神经保护和神经循环中,他们在再生医学领域中引起了很大的关注。命运确定的过程是由多个信号分子引发的。在发育和组织稳态期间,凹口途径在细胞分化和干细胞更新中具有关键功能。越来越多的研究表明,Notch信号通路在HUCMSC增殖和分化中起着关键作用。总结了有关Notch信号通路至关重要功能在维持稳态和确定HUCMSC的细胞命运方面的关键功能的最新进展。此外,作者还总结了与HUCMSC分化中的Notch信号通路有关的介体,以及HUCMSC治疗中涉及的途径改变和机制。
神经祖细胞会产生兴奋性神经元,其次是少突胶质细胞(OLS)和垂体细胞。然而,调节该神经元时间 - 胶质开关的特定机制尚未完全了解。在这项研究中,我们表明,在胚胎发育的后期阶段,需要在背前祖细胞中Notch信号的适当平衡才能产生少突胶质细胞。在两性的小鼠胚胎中使用离体和子宫方法中,我们发现Notch抑制减少了背胸膜中少突胶质细胞的数量。然而,缺口过度活化也阻止了寡构成并保持祖细胞状态。这些结果表明,在促进和抑制寡头生成中,Notch信号传导的双重作用,必须对其进行微调才能在正确的时间和正确的数字中生成少突胶质细胞谱系细胞。在此过程中,我们进一步将其下游的典型档位hes1和hes5确定为负调节剂。crispr(群集定期间隔短的短质体重复)/cas9介导的hes1和hes5的敲低敲低导致促寡胶质细胞因子ASCL1的表达增加,并导致早产性寡构成。相反,将缺口与ASCL1过表达结合起来,可稳健地促进寡头生成,表明与ASCL1合成的Notch机制单独的机制,以指定少突胶质细胞的命运。我们提出了一个模型,其中Notch信号与ASCL1一起工作以指定祖细胞朝向少突胶质细胞谱系,但也通过hES依赖ASCL1的抑制来维持祖细胞状态,从而使少突胶质细胞不太早,从而导致神经元的精确时间促成神经元 - Glia Switch。