1 梅赛德斯-奔驰股份公司,德国斯图加特 2 萨尔大学理论物理学系,德国萨尔布吕肯 66123 3 德国航空航天中心 (DLR),德国科隆 51147 4 巴斯克地区大学 UPV/EHU 物理化学系,Apartado 644,毕尔巴鄂 48080,西班牙 5 巴斯克地区大学 UPV/EHU EHU 量子中心,毕尔巴鄂,西班牙 6 Kipu Quantum,德国柏林 10405 7 IKERBASQUE,巴斯克科学基金会,Plaza Euskadi 5,毕尔巴鄂 48009,西班牙 8 上海大学国际量子人工智能科学技术中心 (QuArtist) 和物理系,上海 200444,中国 9 巴斯克应用数学中心 (BCAM),Alameda de Mazarredo 14,48009西班牙巴斯克地区毕尔巴鄂 10 量子计算分析研究所 (PGI 12),于利希研究中心,52425 于利希,德国(日期:2022 年 11 月 10 日)
这里{ pi }是概率分布,ρ i A 和ρ i B 分别为子系统A和B的状态,则它是可分离的,否则它是纠缠的。对于2 ⊗ 2和2 ⊗ 3系统,上述问题可以通过Peres-Horodecki准则完全解决:二分状态ρ AB 是可分离的当且仅当它是正部分转置(PPT),即(id⊗T)(ρAB)≥0[6]。然而对于任意维系统,该问题是NP难的[7]。在过去的二十年中,还有其他几个突出的准则。可计算交叉范数或重排准则(CCNR)准则由Rudolph[8]以及Chen和Wu[9]提出。 2006 年,作者提出了局部不确定性关系 (LUR),并证明 LUR 比 CCNR 准则更强 [10]。2007 年,作者提出了一个基于 Bloch 表示的准则 [11]。随后,张等人提出了增强重排准则 [12]。2015 年,作者提出了一种改进的 CCNR 准则,并证明其比 CCNR 准则更强 [13]。2018 年,尚等人提出了二分状态可分性的充分条件,称为 ESIC 准则 [14]。最近,Sarbicki 等人提出了一类基于状态的 Bloch 表示的可分性准则 [15]。随后,他们证明
利用量子信道的量子通信正变得实用,但要将其真正投入商业运营,还有许多问题需要解决。在通常的多方安全计算设置中,许多协议都假设两方之间都有安全的通信信道 [1,2]。例如,传统的量子密钥分发 [3] 在假设发送者和接收者相互信任的情况下实现了秘密信道的安全密钥。然而,对于参与者来说,在不信任其他方的情况下实现可靠的通信信道并非易事。此外,不管一方是否信任另一方,即使实现了安全的通信信道,在现实的人际通信中仍可能出现各种问题,包括政治和商业问题。虽然追求能够实现安全、准确量子通信的量子信道技术很重要,但设计能够在量子信道上正确且正常运行的软件和系统也同样重要。研究网络/市场上人们所需的系统和软件称为机制设计(或市场设计),经济学中对机制设计的研究非常广泛,涉及拍卖、最优匹配和公共物品分配 [ 4 – 8 ]。(2007 年瑞典中央银行纪念阿尔弗雷德·诺贝尔经济学奖授予了 Hurwicz、Maskin 和 Myerson,以表彰他们“为机制设计理论奠定了基础”[ 9 ]。)在本研究中,我们从机制设计的角度考虑量子硬币翻转游戏 [ 3 ]。本文假设量子信道在实际应用中
核物理学的底层理论是由量子规范和物质结合的,它在根本上是重要的,但对于使用古典计算机进行仿真而言,这是巨大的挑战。量子计算为研究和理解核物理学提供了一种变革性的方法。随着量子处理器的快速扩展以及量子算法的进步,用于模拟量子量规场和核物理学的数字量子模拟方法已引起了很多关注。在这篇综述中,我们旨在总结使用量子计算机解决核物理学的最新信息。我们首先讨论量子计算语言中核物理学的表述。特别是,我们回顾了如何在量子计算机上映射和研究量子规范(Abelian和Abelian)及其与物质领域的耦合。然后,我们引入了相关的量子算法,以求解量子系统的静态性能和实时演变,并显示其在核物理学中的广泛问题中的应用,包括模拟晶格规范,求解核素和核结构,量子优势,用于在量子上散射量的量子量,量子量,量子量,量子eLd eld eld eld eldequibilibil dynamilics in nor-equibib and of y-un-equibib and of。最后,给出了未来工作的简短展望。
摘要量子技术的出现,包括基于冷原子的辅助仪,是一个机会,有机会改善空间地球任务的性能。在这种情况下,CNES启动了一项评估研究,称为Grice(Gra-Diom´etrie a Interf´erom` eStiques corr'El'Es por l'Espace),以评估冷原子技术对太空测量的贡献以及对地理数据的最终用户的贡献。在本文中,我们介绍了基于长基线梯度表的重力场映射的任务方案。该任务基于两个卫星的星座,在373 km的高度上闪闪发光,每个卫星都配备了冷原子敏化计,灵敏度为6×10-10 m.s-2。τ -1 /2。激光链路测量这两种卫星与夫妻之间的距离,以产生相关的分化加速度测量。已经研究了确定有效载荷的性能的主要参数。我们就重力场的恢复原状进行了对卫星建筑的一般研究和对任务的模拟。模拟表明,该概念将在每月重力领域以下的1000公里分辨率下进行最佳性能。在1000至222 km之间的分辨率频段中,GRICE梯度方法比传统范围速率方法的改善在全球范围内的序列为10%至25%。
纠错码是为了纠正噪声通信信道中的错误而发明的。然而,量子纠错 (QEC) 有更广泛的用途,包括信息传输、量子模拟/计算和容错。这些促使我们重新思考 QEC,特别是量子物理在编码和解码方面所起的作用。许多量子算法,尤其是近期的混合量子经典算法,只使用有限类型的量子态局部测量,这一事实导致了各种称为量子误差缓解 (QEM) 的新技术的出现。这项工作从几个角度研究了 QEM 的任务。利用一些基于经典和量子通信场景的直觉,我们澄清了 QEC 和 QEM 之间的一些基本区别。然后,我们讨论了噪声可逆性对 QEM 的影响,并给出了一个显式构造,称为 Drazin 逆,用于不可逆噪声,它是迹保留的,而常用的 Moore-Penrose 伪逆可能不是。最后,我们研究了对噪声缺乏充分了解的后果,并推导出可以使用 QEM 降低噪声的条件。
遵循Boz˙ek-Wyskiel参数化倾斜初始条件,这是一种基于Glauber碰撞几何形状结构纵向倾斜的螺栓固定的替代方法。这种纵向倾斜的初始条件与理想clvisc(3 + 1)d流体动力模型相结合,观察到在广泛的速度范围内的不变的定向流相关V 1。将模型的结果与实验性观察到的来自√snn = 200 Gev Cu + Cu的导向流量V 1(η)的数据进行了比较,rhIC Energy在RhIC Energy上的cu + Au + Au碰撞与√snn = 2.76 TEV和√snn = 5.02 tev pb + pb collisions at lhc lhc lhc lhc lhc colusions。我们发现,重离子碰撞中的定向流量测量可以对向前和向后传入核的不平衡以及沿X方向的压力梯度的幅度不对称设定强大的限制。
本文介绍了一种基于事件的功率建模新方法,适用于没有性能监控单元 (PMU) 的嵌入式平台。该方法涉及将测量物理功率数据的目标硬件平台与另一个可以收集模型生成所需的 CPU 性能数据的平台进行补充。该方法用于为 Gaisler GR712RC 双核 LEON3 容错 SPARC 处理器生成准确的细粒度功率模型,该处理器带有板载功率传感器,但没有 PMU。Kintex UltraScale FPGA 用作支持平台,通过在 GR712RC 上运行双核 LEON3 的软核表示,但使用 PMU 实现,来获取所需的 CPU 性能数据。两个平台都执行相同的基准测试集,并使用每个样本的时间戳同步数据收集,以便 GR712RC 板的功率传感器数据可以与 FPGA 的 PMU 数据相匹配。然后,同步样本由稳健能量和功率预测器选择 (REPPS) 软件处理,以生成功率模型。在工业用例上验证后,这些模型的功率估计误差小于 2%,并且可以跟踪程序阶段,这使得它们适合在开发过程中进行运行时功率分析。
糖尿病患病率各不相同,研究表明,它对少数群体社区的影响不成比例。美洲印第安人或阿拉斯加原住民成年人的诊断糖尿病率最高。根据疾病控制与预防中心的数据,非裔美国人的诊断患有糖尿病的风险高77%,拉丁裔/西班牙裔的风险高出66%。非白西班牙裔倾向于被诊断出年轻年龄的糖尿病,并表现出更高的空腹葡萄糖水平,胰岛素敏感性降低,胰岛素反应增加以及更严重的糖尿病并发症形式。
任何这样的差异性f分别与捆绑包分别与束相关的f s和w u candemist f -Incinrisiant foriations。[CP])。考虑f -invariant且wu usatureated的层压λM。其叶子的几何特性沿稳定的全职投射时,与理解几个问题非常相关:保守系统的急性(例如[bw]),吸引子的有限性(例如[CPS]),混合属性(例如[tz]),以及其他属性。最近,Katz [ka]使用了一些定量量度测量,以获得基于来自均质和Teichmuller Dynamics [EL,EM]的想法的想法的测量刚度结果(相关的进度是随机动力学系统[BRH],请参见[OB]与[OB]与部分高度多性动力学的联系)。在本文中,我们打算研究[ka]提出的定量非关节可集成性(QNI)的概念。我们在这里仅考虑C 8差异性,并在这种情况下获得等效概念,这些概念似乎更概念化,更易于验证和使用。