该学区的战略计划明确表明了对公平和包容的承诺,因为它以“通过打破教育系统中种族主义的遗留问题,大幅改善有色人种学生的学业和生活成果”的宣言开篇。该计划概述了学区为实现这一目标将采取的各种步骤,包括但不限于成为一个反种族主义系统、采用“有针对性的普遍主义”指导信念、建立非裔美国男性成就 (AAMA) 部门以及与平等机会学校 (EOS) 合作。学区的变革理论以及每个角色、计划、方法和要素如何结合起来改善学生成果和缩小成就差距缺乏明确性。创建一个全面的行动理论可能是有益的下一步。
在Juma住所的居住区中点。此视图走廊从200英尺MSL(平均海平面)高程开始,并向上延伸。由于Novack住所的地面斜率,最好,一致且唯一可靠的方法来测量树木的高度以高于MSL(平均海平面)。
摘要 概述了常见的人工智能 (AI) 技术及其在教育领域应用的主要趋势。分析了终身学习个性化的观点。揭示了现代 LMS 大学在全球化教育知识生态系统中的实施前景。分析了对高等教育机构教师的调查结果,该调查涉及由于实施 AI 元素而预期 LMS 使用效率将提高。分析了对高等教育机构教育环境建模的可能性。建议使用“学生-教育主体-教育过程”模型三元组来分析 AI 技术在教育中的应用。基于组织教育过程的模型,提出了一种计算 AI 使用效果综合指标的方案。提出了一种基于可用机会选择最佳知识评估系统的方法。给出了广义知识评估算法的数学模型。在学生模型层面,在知识相空间中开发了一个学生培训优化模型,同时考虑到应用 AI 技术的可能性。关键词1 教育、学习管理系统(LMS)、人工智能(AI)、效率、数学模型、个性化学习(PL)、学生模型、教育过程模型、教育主体模型、最佳学习轨迹。
用于自主机载会合评估和防撞的原型基础设施 Austin Probe、Graham Bryan、Tim Woodbury、Evan Novak Emergent Space Technologies, Inc. Shiva Iyer、Apoorva Karra 和 Moriba Jah 博士 德克萨斯大学奥斯汀分校 摘要 我们正在努力构建一个可扩展的自主会合评估和避免原型基础设施。这包括一个地面枢纽,用于同步来自操作员的状态信息和计划机动并识别潜在的会合,以及用于自主评估和避免碰撞的机载飞行软件。这项工作将作为 NASA STMD 飞行实验的一部分在 2023 年进行。 1. 简介 会合评估 (CA) 是运行卫星安全的最重要组成部分之一,由于低地球轨道任务和星座的激增,其重要性不断增加。当与集群或星座的自主机动相结合时,难度和复杂性会增加,当此类系统开始与其他自主机动系统交互时,难度和复杂性会进一步增加。由于许多大型自主星座(如 SpaceX Starlink、Amazon Kuiper 和其他商业提供商)以及 SDA 和 MDA 计划在未来十年部署的持久 LEO 星座,找到可扩展的解决方案是实现太空可持续性的关键。
摘要背景患者 COVID-19 状态的不确定性导致治疗延迟、院内传播和医院的运营压力。但是,批量处理的实验室 PCR 测试的典型周转时间仍然为 12-24 小时。尽管快速抗原横向流动检测 (LFD) 已在英国急救环境中得到广泛采用,但灵敏度有限。我们最近证明,AI 驱动的分类 (CURIAL-1.0) 可以使用抵达医院后 1 小时内常规获得的临床数据进行高通量 COVID-19 筛查。在这里,我们旨在确定与标准护理相比的运营和安全性改进,使用针对通用性和速度优化的更新算法在四个 NHS 信托机构中进行外部/前瞻性评估,并在英国急诊室部署一种新的无实验室筛查途径。方法我们对 CURIAL-1.0 中的预测因子进行了合理化,以分别优化通用性和速度,开发了具有生命体征和常规实验室血液预测因子(FBC、U&E、LFT、CRP)的 CURIAL-Lab 以及仅具有生命体征和 FBC 的 CURIAL-Rapide。在训练期间,模型被校准到 90% 的灵敏度,并针对朴茨茅斯大学医院、伯明翰大学医院和贝德福德郡医院 NHS 信托的非计划入院情况进行了外部验证,并在英国 COVID-19 疫情第二波期间在牛津大学医院 (OUH) 进行了前瞻性验证。使用首次进行的血液测试和生命体征生成预测值,并与确认性病毒核酸检测进行比较。接下来,我们回顾性评估了一种新的临床途径,将患者分类到模型预测或 LFD 结果为阳性的 COVID-19 疑似临床区域,并将灵敏度和 NPV 与单独的 LFD 结果进行比较。最后,我们部署了 CURIAL-Rapide 和经批准的即时诊断 FBC 分析仪(OLO;SightDiagnostics,以色列),在约翰拉德克利夫医院急诊科(英国牛津)提供无需实验室的 COVID-19 筛查,这是信托机构认可的服务改进。我们的主要改进结果是获得结果的时间可用性;次要结果是根据 PCR 参考标准评估的敏感性、特异性、PPV 和 NPV。我们将 CURIAL-Rapide 的性能与标准护理中的临床医生分诊和 LFD 结果进行了比较。结果 72,223 名患者符合外部和前瞻性验证站点的资格标准。各信托机构的模型性能一致(CURIAL-Lab:AUROC 范围 0.858-0.881;CURIAL-Rapide 0.836-0.854),朴茨茅斯大学医院的灵敏度最高(CURIAL-Lab:84.1% [95% Wilson 评分 CIs 82.5-85.7];CURIAL-Rapide:83.5% [81.8 - 85.1]),特异性为 71.3%(95% Wilson 评分 CIs:70.9 - 71.8)和 63.6%(63.1 - 64.1)。对于 2021 年 12 月 23 日至 2021 年 3 月 6 日期间在 OUH 入院常规护理中接受 LFD 分诊的 3,207 名患者,联合临床路径将灵敏度从 56 提高。仅 LFD 为 9%(95% CI 51.7-62.0),而 CURIAL-Rapide 为 88.2%(84.4-91.1;AUROC 0.919),CURIAL-Lab 为 85.6%(81.6-88.9;AUROC 0.925)。2021 年 2 月 18 日至 2021 年 5 月 10 日期间,520 名患者前瞻性地接受了即时临床 FBC 分析,其中 436 名患者在常规护理中接受了确认性 PCR 检测,10 名(2.3%)检测呈阳性。从患者到达到获得 CURIAL-Rapide 结果的中位时间为 45:00 分钟(32-64),比 LFD 快 16 分钟(26.3%)
