摘要:利用 CRISPR/Cas 系统组件的基因组编辑方法已广泛应用于分子生物学、基础医学和基因工程。一种有前途的方法是通过修改基于 CRISPR/Cas 的基因组编辑系统的组件来提高其效率和特异性。在这里,我们设计并化学合成了含有修饰核苷酸(2'-O-甲基、2'-氟、LNA — 锁定核酸)或在某些位置含有脱氧核糖核苷酸的向导 RNA(crRNA、tracrRNA 和 sgRNA)。我们比较了它们对核酸酶消化的抵抗力,并检查了由这些修饰向导 RNA 引导的 CRISPR/Cas9 系统的 DNA 切割效率。用 2'-氟修饰或 LNA 核苷酸替换核糖核苷酸增加了 crRNA 的寿命,而其他类型的修饰不会改变它们的核酸酶抗性。 crRNA 或 tracrRNA 的修饰可保持 CRISPR/Cas9 系统的有效性。否则,具有修饰 sgRNA 的 CRISPR/Cas9 系统会显著降低 DNA 切割有效性。2'-氟修饰 crRNA 的系统 DNA 切割动力学常数较高。crRNA 的 2'-修饰还可降低体外 dsDNA 切割的脱靶效应。
图2。DNA,SGRNA和蛋白质相互作用(a)(a)匹配的SPCAS9和(b)MM5-SPCAS9聚焦HNH催化位点和PAM(NGG)区域。(C&D)显示了匹配的和MM5的不同视图,从而缩放了PAM远端和RUVC区域相互作用。T-DNA,NT-DNA和SGRNA分别为颜色的洋红色,黄色和浅蓝色。SPCAS9,HNH和RUVC的两个核酸酶结构域以白色和深蓝色显示。
慢病毒载体(LV)的有效且健壮的下游加工对于产生高质量的基因治疗载体至关重要。在LV生产中使用的传统核酸酶通常会导致最终药物中的次优载体回收和较高的残留DNA水平。该项目旨在识别和整合替代核酸酶,即盐活性核酸酶(SAN)和中盐活性核酸酶(M-SAN),将其纳入OXB的LV制造工作流程中,以增强矢量恢复并提高整体产品质量。对替代核酸酶(例如最佳pH)(参见图A)和盐缓冲液(参见图B)条件的关键特征进行了评估,并将其纳入下游过程(请参见图C),并与传统的基于核酸酶的下游过程进行了比较。我们的发现表明,在典型的LV制造条件下,使用SAN和M-SAN的使用表现出卓越的活动。值得注意的是,在纯化过程中掺入替代核酸酶会减少载体聚集,并在挑战性的无菌过滤步骤中提高了载体恢复左右的载体恢复。最重要的是,这些核酸酶的掺入导致最终药物中残留DNA的水平明显较低,以解决基因治疗应用的关键质量属性。
图 2:使用核转染提供的 Cas9-mRNA 核酸酶、合成 sgRNA 和 ssDNA 寡核苷酸修复模板对 iPSC 进行基因编辑不会对 iPSC 形态造成干扰,可用于对基因组进行微小改变。A) 核转染后 48 小时拍摄的相位图像。比例尺为 100 μm。BC) 分析 LMNA 基因座 (B) 和 MYH7 基因座 (C) 中具有指定所需编辑 (蓝色) 或不需要的 INDEL (灰色) 的总 NGS 测序读数百分比。
CRISPR相关蛋白9(CAS9)是RNA引导的DNA核酸酶,是Pyogenes链球菌CRIS-CRISPR-antivirAniviral免疫系统的组成部分,可提供针对外肌小体遗传材料的适应性免疫。CRISPR抗病毒作用的机制涉及三个步骤:(i)宿主细菌获取外国DNA; (ii)CRISPR RNA(CRRNA)的合成和成熟,然后形成RNA-CAS核酸酶 - 蛋白质复合物; (iii)通过宿主细菌获取外源DNA;该络合物识别出外源DNA,并通过CAS核酸酶活性通过裂解而定向干扰。II型CRISPR/CAS抗病毒免疫系统为精确的基因组编辑提供了强大的工具,并具有特定调节基因和治疗应用的潜力。必须在细胞中引入或表达CAS9蛋白和引导RNA(包括CRRNA和反式激活CRRNA(tracroRNA)之间的融合)。导向RNA的5'末端的20个核苷酸序列将Cas9引导到特定的DNA靶位点。因此,可以“编程” Cas9以在体外以及细胞和生物中切割各种DNA位点。CRISPR/CAS9基因组编辑工具已用于包括小鼠和人类细胞在内的许多生物中。研究表明,CRISPR可用于在啮齿动物和灵长类动物胚胎干细胞中产生突变等位基因或报告基因。
CRISPR-Cas 系统是原核生物的一种免疫机制,可特异性识别和降解外源核酸,从基因上保护生物体 [1]。CRISPR-Cas 系统的功能分为用于靶核酸识别的向导 RNA (gRNA) 和用于切割的 Cas 核酸酶 [1]。该模块化系统通过修改 gRNA 上的靶标识别序列 (TRS) 来切割所需的核苷酸序列 [2],从而实现跨各种生物体(包括微生物)的基因组编辑 [3, 4]。第 2 类 CRISPR-Cas 系统具有单个效应蛋白,主要用于基因组编辑。值得注意的是,大量研究集中在源自化脓性链球菌 (SpCas9) 的 Cas9 [5]。然而,Cas9 蛋白的异源表达可能导致细胞毒性或异常生长 [6, 7]。因此,内源性 CRISPR-Cas 系统 [8]、Cas9 直系同源物 [9] 和 Cas12 或 Cas13 [10] 被用作编辑工具,以提供与靶细胞更好的兼容性。此外,广泛使用的 SpCas9 的尺寸较大(4.1 kb;1,368 aa),这带来了挑战,特别是在包装到空间有限的病毒载体中时 [11]。微型 CRISPR-Cas12f1 系统因其解决这一挑战的潜力而备受关注。Cas12f1 直系同源物由约 500 aa 的单个多肽组成,这比 Cas9 的长度短得多 [12]。已知 Cas12f1 核酸酶形成二聚体,每个单个 RuvC 结构域切割靶 DNA 的两条链 [13, 14]。 Cas12f1 核酸酶在基因组中用于单基因编辑已被报道在多种生物体中,包括大肠杆菌 [15, 16]、炭疽芽孢杆菌 [17]、肺炎克雷伯菌 [18]、小鼠 [19] 和人类 [20, 21]。最近,在天蓝色链霉菌中证实了 Cas12f1 介导的两个基因同时缺失 [22]。然而,Cas12f1 在精确的多重基因组编辑中的应用尚未有记录。在本研究中,我们尝试使用 CRISPR-Cas12f1 系统在大肠杆菌中进行单核苷酸水平的多重基因组编辑。采用了两种策略——调节细胞恢复温度和修改 gRNA,并评估了它们对多重基因组编辑效率和准确性的影响。
1。Araldi,R.P。等人,定期散布的短篇小说重复序列(CRISPR/CAS)工具的医疗应用:全面的概述。基因,2020年。745:p。 144636。2。Frangoul,H.,T.W。 ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。 回复。 n Engl J Med,2021。 384(23):p。 E91。 3。 groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。 分子微生物学,1993。 10(5):p。 1057-1065。 4。 Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。 细菌学杂志,1987年。 169(12):p。 5429-5433。 5。 Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Frangoul,H.,T.W。ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。回复。n Engl J Med,2021。384(23):p。 E91。3。groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。分子微生物学,1993。10(5):p。 1057-1065。4。Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。细菌学杂志,1987年。169(12):p。 5429-5433。5。Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Chen,J.S。和J.A.doudna,Cas9及其CRISPR同事的化学。自然评论化学,2017年。1(10)。6。Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Doudna,J.A。和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。科学,2014年。346(6213):p。 1077-+。7。Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。科学报告,2019年。9。8。tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。自然生物技术,2015年。9。33(2):p。 187-197。Wang,Y。等人,CRISPR系统的特异性分析揭示了脱靶基因编辑的大大增强。科学报告,2020年。10(1)。10。Zuccaro,M.V。等人,在人类胚胎中Cas9裂解后的等位基因特异性染色体去除。单元格,2020。183(6):p。 1650-+。11。Aschenbrenner,S。等人,将Cas9耦合到人工抑制域增强了CRISPR-CAS9目标特异性。科学进步,2020年。6(6)。12。Bondy-DeNomy,J。等人,抗Crispr蛋白抑制CRISPR-CAS的多种机制。自然,2015年。526(7571):p。 136-9。13。Khajanchi,N。和K. Saha,通过小分子调节进行体细胞基因组编辑,控制CRISPR。mol ther,2022。30(1):p。 17-31。14。Han,J。等人,对小分子药物的超敏反应。前疫苗,2022年。13:p。 1016730。15。Pettersson,M.和C.M. 机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。 Div drug Discov Today Technol,2019年。 31:p。 15-27。 16。 Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Pettersson,M.和C.M.机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。Div drug Discov Today Technol,2019年。31:p。 15-27。16。Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Bondeson,D.P。和C.M.机组人员,小分子靶向蛋白质降解。药理学和毒理学年度评论,第57卷,2017年。57:p。 107-123。17。li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。分子,2022。27(24)。18。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。 PLOS Comput Biol,2016年。 12(1):p。 E1004724。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。PLOS Comput Biol,2016年。12(1):p。 E1004724。
图1。有毒基因产物成功克隆在CopyCut ER™Epi400™电用量细胞中。大肠杆菌ACP(酰基载体蛋白,抑制细胞生长)和噬菌体T4 regb(分别裂解细菌RNA,对大肠杆菌剧毒的RNA内核酸酶)分别将其克隆到高拷贝矢量PUC18或PET11中。transformax™EC100™细胞中的全长ACP克隆在测序时包含多个点突变。
摘要 确定转录因子 (TF) 的体内 DNA 结合特异性几乎完全依赖于染色质免疫沉淀 (ChIP)。虽然 ChIP 揭示了 TF 结合模式,但其分辨率较低。采用核酸酶的高分辨率方法,例如 ChIP-exo、染色质内源性裂解 (ChEC-seq) 和 CUT&R UN,可解决 TF 占用和结合位点保护问题。ChEC-seq 中内源性 TF 与微球菌核酸酶融合,既不需要固定也不需要抗体。然而,有人认为 ChEC 期间 DNA 裂解的特异性低于 ChIP 或 ChIP-exo 识别的峰的特异性,这可能反映了转录因子与 DNA 的非特异性结合。我们简化了 ChEC-seq 协议,以最大限度地减少核酸酶消化,同时提高裂解 DNA 的产量。 ChEC-seq2 的切割模式在重复实验和已发表的 ChEC-seq 数据之间具有高度可重复性。结合 DoubleChEC(一种可去除非特异性切割位点的新型生物信息学流程),ChEC-seq2 为三种不同的酵母 TF 确定了高可信度的切割位点,这些位点因其已知结合位点而高度富集,并且与已知靶基因相邻。