视交叉上核 (SCN) 是昼夜节律的中央时钟。动物研究揭示了 SCN 中神经元活动的每日节律。然而,人类 SCN 的昼夜节律活动仍然难以捉摸。在本研究中,为了揭示人类 SCN 活动的昼夜变化,我们采用区域边界映射技术对静息状态功能图像进行 SCN 定位,并使用灌注成像研究 SCN 活动。在第一个实验中(n = 27,包括男女),我们每天扫描每个参与者四次,每 6 小时一次。中午的活动较多,而清晨的活动较少。在第二个实验中(n = 20,包括两种性别),从午夜到黎明每 30 分钟测量一次 SCN 活动,持续 6 小时。结果表明,SCN 活动逐渐减少,与脑电图无关。此外,关灯后 SCN 活动与啮齿动物 SCN 活动相一致。这些结果表明,人类 SCN 的昼夜变化遵循夜行性和昼行性哺乳动物的授时周期,并受物理光而非当地时间的调节。
下丘脑室室核(PVN)受到周围周围核区(PNZ)的γ-氨基丁酸(GABA)的强烈抑制。由于谷氨酸会介导快速兴奋性传播,并且是GABA合成的底物,因此我们测试了其动态增强GABA抑制的能力。在雄性小鼠的PVN切片中,在离子型胶质胶质受体阻滞期间应用浴谷氨酸会增加PNZ诱发的抑制性突触后电流(EIPSC),而不会影响GABA-A受体AGO,而不会影响GABA-A的抑制作用,而不会影响GABA-A的抑制作用 - 含有或单向电流或单次通道的电导率,暗示了预设机械的机械。与这种解释一致,在GABA-A受体的药理饱和过程中,浴谷氨酸无法加强IPSC。突触前分析表明,谷氨酸不影响配对脉冲比,峰值EIPSC变异性,GABA囊泡回收速度或易于释放的池(RRP)大小。值得注意的是,谷氨酸 - GABA强化(GGS)不受代谢型谷氨酸受体阻断的影响,并在标准化到基线幅度时对外部Ca 2+分级。ggs是通过泛但非胶质胶质抑制谷氨酸摄取和抑制谷氨酸脱羧酶(GAD)(GAD)预防的,这表明通过神经兴奋性氨基酸转运蛋白3(EAAT3)(EAAT3)和糖脂转化的谷氨酸转化,表明对谷氨酸摄取的依赖。EAAT3免疫反应性强烈定位于推定的PVN GABA末端。高浴K +还诱导了GGS,这是通过谷氨酸囊泡耗竭预防的,这表明突触谷氨酸释放会增强PVN GABA的抑制作用。ggs抑制了PVN细胞燃料,表明其功能性明显。总的来说,PVN GGS通过与突触释放的谷氨酸合成的GABA合成的囊泡的明显“过度填充”来缓冲神经元激发。我们认为GGS可以防止持续的PVN激发和兴奋性毒性,同时有可能有助于应激适应和习惯。
GBCA(基于Gadolinium的对比剂)是一种用于增加MRI(磁共振图像)图像的对比材料。gadolinium对人类有毒,因此以kelat的形式赋予人类。gadolinium具有有毒作用,无论网络中的kelat和定居如何。这项研究旨在确定由gadolinium释放引起的牙齿核中的gadolium机制,并沉淀在大脑中,这是对综合的解毒剂的释放。模拟分析,以模拟器官中分子反应的运动,并使用OriginLAB应用程序进行图形分析,从模拟结果的反应数据中看到的每个Gadolinium分子产生的图形分析。使用Blender 2.93应用程序可视化和创建小脑模型和齿状核。模拟中使用的几何形状是类似于小脑和齿状核的。Gadolinium扩散的速度将随着进入的Gadolinium分子的数量而增加。在这项研究中,与8000的dimolin分子数量8000和与铁相互作用的模拟与8000以下的gadolinium分子的数量相比,跨金属化过程最快。gadolinium在器官中反应,以使Kelat结合与gadolinium的结合,然后与铁结合,然后与铁结合,然后Gadolinium变为自由离子,并在齿状核中被解释。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月5日发布。 https://doi.org/10.1101/2022.05.05.05.490599 doi:Biorxiv Preprint
先前的研究表明,胰腺α细胞可以转化为β细胞,并且β细胞脱离分化,并且很容易获得2型糖尿病(T2D)中的α细胞表型。但是,参与α-to-β细胞和β-β-to-α-α细胞转变的特定人α细胞和β细胞亚型尚不清楚。在这里,我们已经整合了分离的人类胰岛和人类胰岛移植物的单细胞RNA测序(SCRNA-SEQ)和单核RNA-SEQ(SNRNA-SEQ),并为α-β细胞命运转换提供了更多洞察力。使用这种方法,我们进行了七个新颖的观察结果。1)有五个不同的GCG表达人的α细胞子序列[α1,α1,α2,α-β-转移1(AB-TR1),α-β-透射2(AB-TR2)和α-β(AB)群集(AB-TR2)和α-β(AB)群集,具有不同的人类小动物的转录组概况。2)AB亚集群显示多摩尼语基因表达,主要从SNRNA-SEQ数据推断出,暗示通过mRNA表达鉴定。3)α1,α2,AB-TR1和AB-TR2亚clus子富含特异性的α细胞功能的基因,而AB细胞富含与胰腺祖先和β细胞途径相关的基因; 4)提取的α-和β细胞簇的轨迹推理分析以及RNA速度/PAGA分析表明,AB对α-和β-细胞的分叉过渡潜力。5)基因通用性分析识别Znf385d,TRPM3,CASR,MEG3和HDAC9是朝向β细胞和SMOC1和SMOC1,PLCE1,PAPAPA2,ZNF331,ZNF331,ALDH1A1,ALDH1A1,SLC30A8,SLC30A8,BTG2,TM4SF4,TM4SF4,NRR4A1和PSC的轨迹的签名α细胞。6)显着地,与体外事件相反,AB亚集群在人类胰岛移植物中没有在体内鉴定,而轨迹推断分析表明,仅在体内从α到β细胞的单向转变。7)对成年人类T2D供体胰岛的SCRNA-SEQ数据集的分析表明,从与去分化或转化为α细胞的β-到α细胞的单向单向过渡。总体而言,这些研究表明,可以利用SnRNA-SEQ和SCRNA-SEQ来确定人胰岛内分泌细胞在体外,体内,非糖尿病和T2D中的转录状态的过渡。他们揭示了参与α-和β细胞之间互连的常见轨迹的潜在基因特征,并突出了研究人类胰岛在体内的单个核转录组的实用性和功能。最重要的是,它们说明了研究人类胰岛在自然体内环境中的重要性。
来自美国田纳西州纳什维尔范德比尔特大学生物医学工程系(DJD、GWJ、SN、HFJG、C. Chang.、VLM、C. Constantinidis、DJE)、成像科学研究所(DJD、GWJ、SN、JSS、JWJ、HFJG、C. Chang、VLM、BMD、DJE)以及电气与计算机工程系(C. Chang、BMD、DJE)、计算机科学系(C. Chang)和神经科学系(C. Constantinidis);美国田纳西州纳什维尔范德比尔特外科与工程研究所(DJD、GWJ、SN、HFJG、C. Chang、VLM、BMD、DJE);田纳西州纳什维尔范德比尔特大学医学中心神经外科系(SN、JSS、JWJ、DLP、VLM、DJE)、神经内科系(VLM)、放射科学系(VLM、DJE)以及眼科和视觉科学系(C. Constantinidis);宾夕法尼亚州费城宾夕法尼亚大学生物工程系(AL)、神经科学系(KAD)、神经工程与治疗中心(KAD)和神经内科系(KAD)。
产后发育中的突触修饰对于神经网络的成熟至关重要。兴奋性突触的发育成熟发生在树突状棘的基因座,受生长和修剪动态调节。纹状体棘投射神经元(SPN)从大脑皮层和thalaus中获得兴奋性输入。spns和纹状体层间间接途径(ISPN)的SPN具有不同的发育根和功能。这两种类型的SPN的树突状脊柱成熟的时空动力学仍然难以捉摸。在这里,我们描绘了伏齿木剂和伏齿核(NAC)中DSPN和ISPN的树突状刺的发育轨迹。我们通过将Cre依赖性的AAV-EYFP病毒微注射到新生儿DRD1-CRE或Adora2a-Cre小鼠中,并通过微注射CRE依赖性AAV-EYFP病毒标记了SPN的树突状刺,并在三个级别上分析了旋转生成,包括不同的SPN细胞类型,子区域和后期。在背外侧纹状体中,DSPN和ISPN的脊柱修剪发生在产后(P)30 - P50。在背侧纹状体中,DSPN和ISPN的脊柱密度在P30和P50之间达到了峰值,而DSPN和ISPN的脊柱修剪分别发生在P30和P50之后。在NAC壳中,在p21 - P30后修剪DSPN和ISPN的棘突,但在NAC外侧壳的ISPN中未观察到明显的修剪。在NAC核心中,DSPN和ISPN的脊柱密度分别达到P21和P30的峰值,随后下降。总体而言,DSPN和ISPN中树突状棘的发育成熟遵循背侧和腹侧纹状体中不同的海上轨迹。
摘要:背景:基底神经节信号的神经生理症状和行为生物标志物的景观是指的。基于感应的深脑刺激(DBS)的临床翻译还需要对丘脑下核(STN)内光谱生物标志物的解剖结构进行透彻的理解。目标:目的是系统地研究频谱地形,包括帕金森氏病(PD)患者的STN局部领域(LFP)中广泛的子带,并评估其对DBS临床反应的预测性。方法:使用多接触DBS电极的70例PD患者(130个半球)记录了STN-LFP。A comprehensive spatial characteriza- tion, including hot spot localization and focality estima- tion, was performed for multiple sub-bands (delta, theta, alpha, low-beta, high-beta, low-gamma, high-gamma, and fast-gamma (FG) as well as low- and fast high-fre- quency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS。建立了光谱生物标记图,并用于预测对DBS的临床反应。
摘要:丘脑下核(STN)的深脑刺激(DB)是减轻帕金森氏病(PD)运动症状的手术程序。DBS的模式(例如,所使用的电极对和刺激强度)通常通过基于运动功能的主观评估来优化试验和误差。我们测试了DBS在选定的基底神经节核中释放谷氨酸的假设,并创建了6-羟基羟基胺(6-OHDA)诱导的nigrostriatal病变会在这些基础神经节核中的DBS释放中改变谷氨酸。我们研究了在麻醉,对照和6-OHDA治疗的大鼠中,STN本身或Globus Pallidus(GP)中DBS的伪随机二进制序列与谷氨酸(GP)之间的关系。我们使用使用系统识别估算的转移函数表征了DBS和谷氨酸水平之间的刺激 - 反应关系。刺激GP和STN中STN升高的谷氨酸水平。 尽管6-OHDA处理不会影响DBS在STN期间STN中的谷氨酸动力学,但由于存在或不存在6-OHHDA诱导的病变,DBS在STN中的DBS和GP中DBS之间的DBS之间的转移功能显着改变。 因此,在6-OHDA处理的动物中GP中的谷氨酸反应(但不在STN中)取决于多巴胺能输入。 因此,在DBS患者中,测量GP中的谷氨酸水平可能会在闭环DBS设备中提供有用的反馈目标,因为DBS期间GP中谷氨酸释放的动力学似乎反映了SNC中多巴胺能神经元的丧失。刺激GP和STN中STN升高的谷氨酸水平。尽管6-OHDA处理不会影响DBS在STN期间STN中的谷氨酸动力学,但由于存在或不存在6-OHHDA诱导的病变,DBS在STN中的DBS和GP中DBS之间的DBS之间的转移功能显着改变。因此,在6-OHDA处理的动物中GP中的谷氨酸反应(但不在STN中)取决于多巴胺能输入。因此,在DBS患者中,测量GP中的谷氨酸水平可能会在闭环DBS设备中提供有用的反馈目标,因为DBS期间GP中谷氨酸释放的动力学似乎反映了SNC中多巴胺能神经元的丧失。
PowersWapNucleus®经典锂电系统旨在将生产力扩大到仓库/DC,生产地板和其他工业环境的所有空间中。这些坚固而轻巧的电池系统一次可每次提供8-12+小时以上的安静,无缝的AC电源。耗尽电池充电后,只需在几秒钟内用充满电的充满电的电池换成24/7操作即可。