基因组信息编码在长链 DNA 上,DNA 折叠成染色质并储存在微小的细胞核中。核染色质是一种带负电荷的聚合物,由 DNA、组蛋白和各种非组蛋白组成。由于其高电荷性质,染色质结构随周围环境(例如阳离子、分子拥挤等)而变化很大。过去 10 年,已经开发出捕获活细胞中染色质的新技术。我们对染色质组织的看法已从规则和静态转变为更加多变和动态。染色质形成许多紧凑的动态区域,它们充当高等真核细胞中基因组的功能单位,局部呈现液体状。通过改变 DNA 的可及性,这些区域可以控制各种功能。基于来自多功能基因组学和先进成像研究的新证据,我们讨论了拥挤的核环境中染色质的物理性质及其调控方式。
Abstract Neurons of the ventrolateral periaqueductal gray (vlPAG) and adjacent deep mesencephalic reticular nucleus (DpMe) are implicated in the control of sleep-wake state and are hypothesized components of a flip-flop circuit that main- tains sleep bistability by preventing the overexpression of non-rapid eye movement (NREM)/REM sleep intermediary states (NRT)。为了确定VLPAG/DPME神经元在维持睡眠双重性方面的贡献,我们将触发器电路的计算机模拟与VLPAG/DPME神经元的局灶性灭活相结合,通过微透析通过GABA A的受体激动剂在自由的肌肉中递送Mycroprogrination n = 25),以进行gaba A受体激动剂(N = 25)的仪器(n = 25)。rem睡眠,与先前的研究一致。但是,我们对体内NRT动力学的分析以及Flop-Flop电路模拟产生的分析表明,当前的思维过于狭窄地集中在REM睡眠不活跃种群对REM睡眠控制中的REM睡眠群体对VLPAG/DPME参与的贡献。我们发现,Muscimol介导的REM睡眠的大部分介导的增加被更恰当地归类为NRT。失去睡眠的丧失伴随着REM睡眠的分裂,这证明了Short Short Rem睡眠爆发数量的增加。rem睡眠碎片化源于源自REM睡眠中的NRT回合的数量和持续时间。相比之下,nREM睡眠回合也不会被VLPAG/DPME失活所破坏。在触发电路电路模拟中,不能仅仅通过抑制REM睡眠不活跃的种群来进行这些变化。取而代之的是,需要对REM睡眠的组合抑制和无效的VLPAG/DPME亚群来复制NRT动力学的变化。
1日本广岛大学生物医学与健康科学研究院麦戈文大脑研究所,马萨诸塞州脑和认知科学系,马萨诸塞州剑桥,马萨诸塞州剑桥市02139,5病毒载体发展部分,美国国家生理科学研究所,冈萨基,冈崎,AICHI 444-8585,日本日本,6 Fasmac Company Ltd,ltd intection ltd,Molecigi atsugi 243333333333333333333333399。生物医学科学,福岛医科大学,福岛960-1295,日本和8号神经科学系,京都大学研究生院,京都大学,京都606-8501,日本
许多神经系统疾病和损伤中存在的步态障碍,包括帕金森氏病(PD),中风和脊髓损伤。神经系统步态疾病在老年人中尤为常见,60岁以后的患病率超过20%(Mahlknecht等人,2013年),随着人口统计学的转变,社会健康负担可能增加。这些障碍会导致不动和跌倒,并有助于社会隔离,减少生活质量和失去独立性(Mahlknecht等,2013)。很少有治疗选择,因此在这一领域的研究中必须进行研究。在这篇观点文章中,我们回顾了导致Pedunculopontine Nucleus(PPN)进行深脑刺激(DB)的临床试验,讨论了这些试验未成功的潜在原因,并介绍了支持我们的新研究,支持我们的观点,即我们认为附近的Cune Sourture Nucleus(CNF)可能是一个更有效的目标。
丘脑底核 (STN) 的深部脑刺激 (DBS) 是治疗帕金森病 (PD) 运动症状的有效方法。然而,介导症状缓解的神经元素尚不清楚。先前的研究得出结论,直接光遗传学激活 STN 神经元对于缓解帕金森病症状既不是必要的也不是充分的。然而,用于细胞特异性激活的通道视紫红质-2 (ChR2) 的动力学太慢,无法跟上有效 DBS 所需的高速率,因此 STN 神经元的激活对 DBS 治疗效果的贡献仍不清楚。我们使用超快视蛋白 (Chronos) 量化了单侧 6-羟基多巴胺 (6-OHDA) 损伤后雌性大鼠的光遗传学 STN DBS 对行为和神经元的影响。 130 pps 的光遗传 STN DBS 减少了病理性旋转并改善了前肢踏步缺陷,类似于电 DBS,而使用 ChR2 的光遗传 STN DBS 不会产生行为效应。与电 DBS 一样,光遗传 STN DBS 表现出对刺激率的强烈依赖性;高刺激率可缓解症状,而低刺激率无效。高刺激率光遗传 DBS 可增加和减少 STN、苍白球外部 (GPe) 和黑质网状部 (SNr) 中单个神经元的放电率,并破坏 STN 和 SNr 中的 b 波段振荡活动。高速率光遗传学 STN DBS 确实可以通过减少 STN 相关神经回路中的异常振荡活动来改善帕金森病运动症状,这些结果强调了视蛋白的动力学特性对光遗传学刺激的效果有很大影响。
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。
在帕金森病 (PD) 中,病理性高水平的 β 活动 (12-30 Hz) 反映了特定的症状,并通过药物或手术干预恢复正常。尽管接受深部脑刺激 (DBS) 的 PD 患者丘脑底核 (STN) 中的 β 特征现已转化为自适应 DBS 系统,但只有有限数量的研究表征了苍白球内部 (GPi) 中的 β 功率,而苍白球内部是同样有效的 DBS 目标。我们的目标是比较接受 DBS 的 PD 患者在休息和运动时 STN 和 GPi 中的 β 功率。37 名人类女性和男性参与者完成了一项简单的行为实验,包括休息和按下按钮的时间,从而从 19 个(15 名参与者)STN 和 26 个(22 名参与者)GPi 核中记录局部场电位。我们检查了整体 beta 功率以及 beta 时域动态(即 beta 爆发)。我们发现 GPi 在静息和运动期间的 beta 功率更高,运动期间 beta 失同步也更多。beta 功率与运动迟缓和僵硬严重程度呈正相关;然而,这些临床关联仅存在于 GPi 队列中。关于 beta 动态,GPi 和 STN 中的爆发持续时间和频率相似,但 GPi 爆发更强且与运动迟缓-僵硬严重程度相关。因此,不同基底神经节核的 beta 动态不同。相对于 STN,GPi 中的 beta 功率可能更容易被检测到,随着运动而发生更多调节,并且与临床损伤更相关。总之,这可能表明 GPi 是基于 beta 的自适应 DBS 的潜在有效目标。
中央核 (CM) 是丘脑板内核,被认为是深部脑刺激 (DBS) 和消融手术治疗多种神经和精神疾病的潜在有效靶点。然而,CM 的结构在标准 T1 和 T2 加权 (T1w 和 T2w) 磁共振图像上是不可见的,这妨碍了它作为临床应用的直接 DBS 靶点。本研究的目的是展示如何使用定量磁化率映射 (QSM) 技术对丘脑区域内的 CM 进行成像。本研究纳入了 12 名患有帕金森病、肌张力障碍或精神分裂症的患者。在 3-T MR 扫描仪上获取 3D 多回波梯度回忆回波 (GRE) 序列以及 T1w 和 T2w 图像。QSM 图像是根据 GRE 相位数据重建的。在 T1w、T2w 和 QSM 图像上对 CM 进行了直接目视检查。此外,使用单因素方差分析 (ANOVA) 检验比较了 T1w、T2w 和 QSM 图像上 CM 与丘脑相邻后部的对比噪声比 (CNR)。QSM 显著改善了 CM 核的可视化。在 QSM 上可以观察到与周围环境相比 CM 的清晰轮廓,但在 T1w 和 T2w 图像上则未观察到。统计分析表明,QSM 上的 CNR 明显高于 T1w 和 T2w 图像上的 CNR。总之,我们的结果表明 QSM 是一种有前途的技术,可改善 CM 的可视化,作为 DBS 手术的直接靶向。
第 1 小时平均值 40.32 ± 1.51 40.06 ± 1.28 40.35 ± 1.30 40.41 ± 1.55 40.27 ± 1.33 40.15 ± 1.28 NS 第 6 小时平均值 40.78 ± 1.61 40.49 ± 1.34 40.30 ± 1.26 40.78 ± 1.64 40.35 ± 1.14 40.53 ± 1.33 NS 第 1 小时平均值 - 0.66 ± 0.08 0.75 ± 1.56 0.81 ± 0.25 1.23 ± 0.51 0.82 ± 0.15 0.54 ± 0.22 NS 基线睡眠开始时间 40.60 ± 1.08 40.07 ± 1.43 40.32 ± 1.33 40.29 ± 1.52 40.23 ± 1.33 40.06 ± 1.30 NS 最高温度 41.50 ± 1.63 41.25 ± 1.36 41.49 ± 1.46 41.66 ± 1.68 41.23 ± 1.32 41.46 ± 1.48 NS 6小时内注射时间 170.8 ± 35.1 204.1 ± 38.5 198.7 ± 42.9 171.8 ± 30.3 178.6 ± 33.6 181.1 ± 23.0 NS 至最高温时间(分钟) 环境温度 26.4 ± 0.16 26.7±0.14 26.5±0.16 26.5±0.16 26.5±0.15 26.4±0.15 正常