在近几十年中,各种研究表明,从地面GNSS接收器中吸收对流层参数有利于数值天气预测(NWPS)。但是,所达到的性能受到GNSS的空间分辨率的限制,尤其是在垂直方向上。在过去几年中,无人驾驶汽车(UAV)(UAV)的迅速发展和不断增长的市场促进将低成本GNS硬件集成到各种自动驾驶系统中,有可能通过收集无人机来收集飞机GNSS数据并生成Zenith deal(ZTDS)来解决这一问题。机载GNSS ZTD可以充当用于获得对流层垂直剖面的辐射数据的潜在互补来源,使其有望研究在NWP中吸收高时空分辨率的GNSS ZTD的影响。
这篇论文是由学者的矿山带给您的,这是密苏里州S&T图书馆和学习资源的服务。这项工作受美国版权法的保护。未经授权的使用,包括重新分配的复制需要版权持有人的许可。有关更多信息,请联系scholarsmine@mst.edu。
ClémentBrochet,Laure Raynaud,Nicolas Thome,Matthieu Plu,ClémentRambour。具有生成对抗网络的公里尺度数值天气预测的多元仿真:概念证明。地球系统的人工智能,2023,2(4),10.1175/aies-d-23- 0006.1。Meteo-044438969
摘要 - 片上功率电网(PG)的摘要分析至关重要,但由于综合电路(IC)量表的迅速增长,在计算上具有挑战性。当前EDA软件采用的传统数值方法是准确但非常耗时的。为了实现IR滴的快速分析,已经引入了各种机器学习(ML)方法来解决数值方法的效率低下。但是,可解释性或可伸缩性问题一直在限制实际应用。在这项工作中,我们提出了IR融合,该IR融合旨在将数值方法与ML相结合,以实现静态IR滴分析中准确性和效率之间的权衡和互补性。具体而言,数值方法用于获得粗糙的解决方案,并利用ML模型进一步提高准确性。在我们的框架中,应用有效的数值求解器AMG-PCG用于获得粗糙的数值解决方案。然后,基于数值解决方案,采用了代表PG的多层结构的层次数值结构信息的融合,并设计了Inpection unet u-net模型,旨在捕获不同尺度上特征的详细信息和相互作用。为了应对PG设计的局限性和多样性,将增强的课程学习策略应用于培训阶段。对IR融合的评估表明,其准确性明显优于以前的基于ML的方法,同时需要在求解器上迭代较少的迭代才能达到相同的准确性,与数值方法相比。
Saeed Asadi 1, *,Mohsen Mohammadagha 1,Hajar Kazemi Naeini 1 1 1 1土木工程系,德克萨斯大学阿灵顿分校,德克萨斯州阿灵顿。
许多地下流动应用涉及对物理定律充分了解的组成部分,以及在物理定律了解不足或不适用的其他组件中。数值建模在前者方面擅长于以前的机器学习(ML)在后者方面的插值数据,但是两种方法都无法同时解决这些组件。现有的ML方法(通常称为具有物理信息的ML或PIML)同时处理这些类型的组件是对标准ML方法的较小调整(例如,PIML可能会使用物理数据进行训练或损失功能来鼓励ML遵守ML,而无需任何准确保证方程式)。调整黑盒ML模型在根本上受到限制,因为“大数据没有解释自身” - 在模型中意味着,可解释的结构是提高可预测性,使人类理解和最大化小数据影响的必要性。我们展示了可区分的编程(DP)如何使我们能够使用可训练的ML融合值得信赖的数值建模,从而增强了用于物理模型开发,倒数分析和机器学习的工作流程。
1关于风险,环境,可调性以及城市和国家规划(CEREMA)的研究和专业知识中心,23 AV。沙文海军上将,法国49130 Les Ponts-De-Cé; David.guilbert@cerema.fr 2 Logiroad,5 Rue de l'Ectlose,44118 LaChevrolière,法国; yann.goyat@logiroad.fr(y.g。); ali.assaf@logiroad.fr(A.A.)3材料与结构部(桅杆lames),古斯塔夫·埃菲尔大学,南特斯校园,AlléeDesPonts etchaussées,44340 Bouguenais,法国; Amine.ihamouten@univ-eiffel.fr 4组件与系统部(COSYS-SII),Gustave Eiffel大学,Nantes Campus,AlléeDesPonts etChaussées,44340 Bouguenais,法国; shreedhar.todkar@gmail.com 5评估和成像实验室(GERS-GEOEND),Gustave Eiffel University,Nantes Campus,AlléeDesPonts etChaussées,44340 Bouguenais,法国; xavier.derobert@univ-eiffel.fr *通信:rakeeb.jaufer@cerema.fr;这样的。:+33-699565486
脑成像数据的分析需要复杂的处理流程来支持有关脑功能或病理的发现。最近的研究表明,分析决策的变化、少量噪音或计算环境可能会导致结果的巨大差异,从而危及结论的可信度。我们通过使用蒙特卡罗算法引入随机噪声来检测结果的不稳定性。我们评估了连接组的可靠性、其特征的稳健性以及对分析的最终影响。结果的稳定性范围从完全稳定(即所有数据位都有效)到高度不稳定(即 0-1 个有效数字)。本文强调了利用大脑连接估计中诱导的方差来减少网络偏差的潜力,同时不影响可靠性,同时提高其在个体差异分类中的应用的稳健性和潜在上限。我们证明,稳定性评估对于理解脑成像实验固有的误差是必要的,以及如何将数值分析应用于脑成像和其他计算科学领域的典型分析工作流程,因为所使用的技术与数据和上下文无关,并且具有全局相关性。总体而言,虽然由于分析不稳定性导致的结果极端多变可能会严重妨碍我们对大脑组织的理解,但它也为我们提供了提高研究结果稳健性的机会。
摘要:耳胶囊和周围的颞骨表现出复杂的3D运动,受骨传导刺激的频率和位置影响。所得的与当经压力的相关性尚未足够理解,因此在实验和数值上都是这项研究的重点。实验是在三个尸体头的六个颞骨上进行的,在0.1-20 kHz的乳突和经典的巴哈位置上应用了bc助听器刺激。在包括海角和stapes在内的各个颅骨区域上测量了三维运动。使用自定义的声学接收器测量了2粒内压力。该实验是基于Liuhead的自定义有限元模型(FEM)的数字重新创建的,并增加了听觉外围。在4、8和20 GPA之间变化了FEM内皮质骨结构域的模量。 在大多数频率上与实验数据排列的预测差分后压力,并表明头骨变形,尤其是在耳囊中,取决于颅底材料的性能。 实验结果和FEM结果表明,耳胶囊表现为刚性加速度计,在耳蜗上施加惯性载荷,甚至在7 kHz以上。 未来的工作应探讨耳囊和耳蜗含量之间的固体流体相互作用。 v C 2025作者。 所有文章内容(除非另有说明,否则都将根据Creative Commons归因(cc by)许可(https://creativecommons.org/licenses/4.0/)获得许可。在4、8和20 GPA之间变化了FEM内皮质骨结构域的模量。在大多数频率上与实验数据排列的预测差分后压力,并表明头骨变形,尤其是在耳囊中,取决于颅底材料的性能。实验结果和FEM结果表明,耳胶囊表现为刚性加速度计,在耳蜗上施加惯性载荷,甚至在7 kHz以上。未来的工作应探讨耳囊和耳蜗含量之间的固体流体相互作用。v C 2025作者。所有文章内容(除非另有说明,否则都将根据Creative Commons归因(cc by)许可(https://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1121/10.0034859(2024年8月28日收到; 2024年12月19日修订; 2024年12月20日接受; 2025年1月28日在线发布)[编辑:Julien Meaud]
gröbner基础理论是计算代数中的一个基本概念,尤其是在多项式理想的研究中。Gröbner基地的历史可以追溯到奥地利数学家WolfgangGröbner和他的学生Bruno Buchberger的作品。尽管Gröbner本人并没有提出这个概念,但他在代数几何学和环理论中的工作奠定了重要的基础。GröbnerBases的概念以他的荣誉命名。Gröbner基础理论的正式发展始于Buchberger的博士学位。 1965年,在沃尔夫冈·格布纳(WolfgangGröbner)的监督下,在1965年在因斯布鲁克大学(University of Innsbruck)举行。Buchberger引入了一种算法(现在称为Buchberger算法),用于在多项式环中为给定的理想构建Gröbner基础。该算法将方法转化为多项式方程,