退火和淬火等热处理工艺对于确定金属材料的残余应力演变、微观结构变化和机械性能至关重要,残余应力在部件性能中起着更大的作用。本文研究了热处理对使用 LENS 制造的 AISI 1025 中残余应力的影响。开发并模拟了有限元模型以分析残余应力的发展。适用于熔融沉积成型 (FDM) 长丝生产中的工具和模具应用的 AISI 1025 样品是使用激光工程净成型 (LENS) 工艺制造的,然后进行热处理,即进行退火和淬火工艺。将所研究的热处理样品的材料微观结构、残余应力和硬度与原始样品进行了比较。结果表明,与原始样品相比,退火后,拉伸残余应力降低了 93%,导致裂纹扩展速率降低,尽管硬度显著降低了 25%。另一方面,淬火后记录到 425±14 MPa 的高拉伸残余应力,硬度提高了 21%。
在1950年代末和1960年代初扩展了有关图形统治的研究。该主题的历史可以追溯到1862年,他研究了确定控制或覆盖棋盘需要多少个女王的问题[9]。克劳德·伯格(Claude Berge)在1958年的图理论书中首先提出了图的统治数或(外部稳定系数)的概念。术语(主导数字)和(主导集)首先由Oystein Ore在1962年的图表理论书中使用[10]。由Cockayne和Hedetniemi在1977年提出了公认的符号𝛾(𝐺),以表示统治数[11]。娱乐性数学的研究导致对图中的优势进行了研究。数学家专门研究了如何以与他们可以攻击或控制棋盘上每个正方形相同的方式排列碎片[12]。
涡轮额定功率的增加超过≥14MW,需要替代稀土永久磁铁(PM)发电机是风能领域的当前趋势。1个高温超导(HTS)在电兴奋的同步发电机中是一种有前途的替代方案,在过去十年中,它一直是几个研究项目的主题。2对于多种优势,HTS激发大多是在无齿轮,直驱动(DD)同步发电机(额定速度NN≈10RPM)的背景下进行讨论的,例如减少的发电机质量M Gen和增加机械电源转换的发电机效率η。在EcoSwing项目3中已证明了无齿轮3.6 MW发电机的技术可行性。避免使用齿轮以更高的可靠性和较低的维护工作能力产生非常大的DD发电机,以实现大发电机扭矩。较大的发电机尺寸随迄今为止昂贵的HTS材料带来了大量。
部分微分方程是用于描述各种物理现象的基本数学工具,从流体动力学和热传导到量子力学和财务建模。解决PDE对于理解和预测这些系统的行为至关重要,但是传统的数值方法(例如有限差异,有限元和光谱方法)在处理复杂,高维问题时通常会遇到重大挑战。近年来,机器学习已成为对经典数值方法的有力替代方案或补充,提供了有效解决PDE的新方法。机器学习驱动的PDE的数值解决方案有可能通过提供更准确,更快和可扩展的解决方案来彻底改变计算科学。将机器学习与数值PDE求解器集成的关键动机之一是ML模型以高精度近似复杂函数及其导数的能力。神经网络,尤其是深度学习模型,在学习大型数据集中学习复杂的模式和关系方面取得了巨大的成功。
a b s t r a c t我们通过进行轴心对称辐射 - 磁性水力动力学模拟了70 M⊙星的重力崩溃,该轴向辐射 - 磁性水力动力学模拟了70 M⊙恒星具有两分矩的多矩中准中性相关性,从而,在完全相对于一般性相关的情况下,通过进行70 M⊙星的重力崩溃,从而对黑洞(BH)形成及其随后的爆炸性活性的影响进行了研究,从而对黑洞(BH)形成(BH)形成及其随后的爆炸活性的影响。由于其密集的恒星结构,即使强烈磁化模型在BH形成之前经历了所谓的磁爆炸,所有模型也无法成为最终的BH形成。在强磁模型中观察到的一个有趣的现象是在BH后形成中形成了相对论的射流。相对论射流是强力磁场和低密度材料与BH相结合的结果。射流进一步增强了爆炸能量,超过了10 52 ERG,在冲击之前,它远远超过了重力O V ER侧面。我们的自以为是的超新星模型表明,在超新星祖细胞的高质量端旋转磁化的巨大恒星可能是Hypernova和长伽马射线爆发祖细胞的潜在候选者。
摘要这项研究表征了海洋生物碳泵指标,在区域碳循环评估和过程的第二次迭代中(RECCAP2)项目。此处的分析重点介绍了颗粒有机碳(POC)生产中的全球和生物组尺度区域模式的比较,并从RecCap2海洋生物地球化学模型集合中与源自卫星遥感,沉积物陷阱和地球化学方法衍生的观测产物的观测产物从RECCAP2海洋生物地球化学模型集合中下沉。在平均大规模空间模式中通常存在良好的模型数据一致性,但在模型集合和观察产物中具有大量分布。全球综合的集合均值出口产生,被视为在100 m(6.08±1.17 pg c yr -1)下的下沉POC通量,并且出口比定义为下沉量除以净初级产量(0.154±0.026)(0.154±0.026),都在较低的估计估计量下降。与观察性约束的比较还表明,模型整体可能低估了高生产率区域中的区域生物学CO 2下水道和Air -Sea Co 2通量。在1,000 m(0.65±0.24 pg c yr -1)中发现了合理的模型数据一致性,用于全球融合的,合奏均值下沉的POC通量,并在1,000 m上通过100 m(0.122±0.041)(0.122±0.041)(0.122±0.041)分配为1,000 m的转移效率,并在两种情况下进行变化。RECCAP2分析提出了用于评估生物地球化学模型技能的标准海洋生物碳泵指标,对于进一步建模的努力至关重要,这些指标至关重要,以解决涉及海洋物理学与生物地球化学之间系统水平相互作用的剩余不确定性。
摘要这项研究表征了海洋生物碳泵指标,在区域碳循环评估和过程的第二次迭代中(RECCAP2)项目。此处的分析重点介绍了颗粒有机碳(POC)生产中的全球和生物组尺度区域模式的比较,并从RecCap2海洋生物地球化学模型集合中与源自卫星遥感,沉积物陷阱和地球化学方法衍生的观测产物的观测产物从RECCAP2海洋生物地球化学模型集合中下沉。在平均大规模空间模式中通常存在良好的模型数据一致性,但在模型集合和观察产物中具有大量分布。全球综合的集合均值出口产生,被视为在100 m(6.08±1.17 pg c yr -1)下的下沉POC通量,并且出口比定义为下沉量除以净初级产量(0.154±0.026)(0.154±0.026),都在较低的估计估计量下降。与观察性约束的比较还表明,模型整体可能低估了高生产率区域中的区域生物学CO 2下水道和Air -Sea Co 2通量。在1,000 m(0.65±0.24 pg c yr -1)中发现了合理的模型数据一致性,用于全球融合的,合奏均值下沉的POC通量,并在1,000 m上通过100 m(0.122±0.041)(0.122±0.041)(0.122±0.041)分配为1,000 m的转移效率,并在两种情况下进行变化。RECCAP2分析提出了用于评估生物地球化学模型技能的标准海洋生物碳泵指标,对于进一步建模的努力至关重要,这些指标至关重要,以解决涉及海洋物理学与生物地球化学之间系统水平相互作用的剩余不确定性。
在本文中,我们描述了用于定量自然语言推断(QNLI)的方法,以及Semeval2024 Numeval任务1中的定量问题回答(QQA)。挑战的重点是增强模型的定量理解,从而证明其在某些任务上的绩效。我们从两个角度完成了这项任务:(1)通过在监督的微调阶段集成现实世界的数值 - 隔离数据(SFT)阶段,我们增强了该模型的NU-MERIMIC敏感性。(2)我们开发了一种重要的奖励模型评分机制,利用了从Human Refectback(RLHF)技术中的强化学习来提高模型的推理完整性。表现出的结果表明,我们的甲基动物可以实现出色的性能。我们的代码可以在https://github.com/ bit-numeval/numeval找到。
抽象的许多神经退行性疾病与错误折叠的Prionic proins的传播有关。在本文中,我们分别分析了与帕金森氏症和阿尔茨海默氏病有关的α-羟基核蛋白和淀粉样蛋白β的错误折叠和扩散过程。我们引入并分析了一种阳性的数值方法,用于离散Fisher-Kolmogorov方程,建模积累和Prionic蛋白的扩散。提出的近似方法基于关于多边形和多面体网格的不连续的Galerkin方法,用于空间离散化和ϑ - 方法时间积分方案。我们证明了离散解决方案的存在和一个收敛结果,其中使用隐式欧拉方案进行时间整合。我们表明,所提出的方法是在结构上提供的,从某种意义上说,它可以保证离散解决方案是非负的,这在实际应用中至关重要。我们的数值模型的数字验证既是使用制成的解决方案,又是考虑二维多边形网格中的波前传播。接下来,我们提出了在矢状平面中二维脑切片中扩散的α-突触核蛋白的模拟。该模拟的多边形网格被凝聚为维持白色和灰质的区别,利用了polydg方法在网格结构中的灵活性。我们的数值模拟证实了所提出的方法能够捕获帕金森氏症和阿尔茨海默氏病的演变。最后,我们通过使用从磁共振图像重建的三维几何形状和从正电子发射断层扫描重建的初始条件来模拟淀粉样蛋白β在患者特异性设置中的扩散。
抽象的许多神经退行性疾病与错误折叠的Prionic proins的传播有关。在本文中,我们分别分析了与帕金森氏症和阿尔茨海默氏病有关的α-羟基核蛋白和淀粉样蛋白β的错误折叠和扩散过程。我们引入并分析了一种阳性的数值方法,用于离散Fisher-Kolmogorov方程,建模积累和Prionic蛋白的扩散。提出的近似方法基于关于多边形和多面体网格的不连续的Galerkin方法,用于空间离散化和ϑ - 方法时间积分方案。我们证明了离散解决方案的存在和一个收敛结果,其中使用隐式欧拉方案进行时间整合。我们表明,所提出的方法是在结构上提供的,从某种意义上说,它可以保证离散解决方案是非负的,这在实际应用中至关重要。我们的数值模型的数字验证既是使用制成的解决方案,又是考虑二维多边形网格中的波前传播。接下来,我们提出了在矢状平面中二维脑切片中扩散的α-突触核蛋白的模拟。该模拟的多边形网格被凝聚为维持白色和灰质的区别,利用了polydg方法在网格结构中的灵活性。我们的数值模拟证实了所提出的方法能够捕获帕金森氏症和阿尔茨海默氏病的演变。最后,我们通过使用从磁共振图像重建的三维几何形状和从正电子发射断层扫描重建的初始条件来模拟淀粉样蛋白β在患者特异性设置中的扩散。