摘要:防弹衣对于减轻穿透性伤害和挽救士兵生命至关重要。然而,弹道撞击防弹衣会导致背部变形 (BFD),对战场造成致命伤害构成严重威胁。该研究进行有限元建模以评估防弹衣面板的防护性能。数值模拟考虑了各种参数,包括撞击速度和弹丸撞击角度,这些参数用于估计复合材料层压板的残余速度和损伤模式。使用基于有限元分析的 LS-DYNA 代码进行模拟。研究的主要结果揭示了剑麻和玻璃纤维复合材料的弹道行为的重要见解。该研究确定了剑麻和玻璃纤维复合材料之间的具体响应、损伤发展模式和比较分析。研究结果对于开发先进材料以改善弹道防护具有实际意义。
已知金属卤化物钙钛矿材料中的固有离子迁移可引起基于偏置应用时这些化合物的X和𝜸射线检测器中有害且高度不稳定的深色电流。深色电流随着时间的流逝而缓慢漂移被确定为满足工业需求的这些设备的主要缺点之一。因为暗电流建立可检测性极限,电流演化和最终生长可能会掩盖通过传入的X射线光子产生的光电流信号。检测器评估的相关信息是离子相关参数,例如离子浓度,离子迁移率和离子空间充电区,这些区域最终在检测器偏置的外部接触附近建立。使用单晶和微晶毫米 - 毫米 - 甲基铵铅溴化物,允许在μ离子≈10-7cm 2 v - 1 s-1 s-ion univers outiation in I In ion umiention in I I Onion In ion In I IM ion umigiation 之后,使用单晶和微晶毫米 - 甲基铵铅溴化物,然后使用单晶和微晶毫米 - 甲基铵铅溴化物进行。钙钛矿结晶度。之后,使用单晶和微晶毫米 - 甲基铵铅溴化物,然后使用单晶和微晶毫米 - 甲基铵铅溴化物进行。钙钛矿结晶度。。钙钛矿结晶度。
技术:•蒸汽甲烷改革(参考):H 2通过天然气的蒸汽甲烷改革生成合成气,然后是H 2。(基线)•固体氧化电解(SOE):H 2通过电解在具有固体氧化物/陶瓷电解质的燃料电池中产生(ADV:高效率)。•聚合物 - 电解质 - 膜电解(PEME):H 2通过固体聚合物电解质的细胞中的电解生成(ADV:低重量和体积)。
摘要 在本研究中,我们提出了一种新颖的冷却方案,该方案利用铜反蛋白石 (CIO) 在单相冲击喷射冷却系统中进行表面增强。我们执行计算流体动力学模拟来评估 CIO 喷射冷却器的冷却性能。我们的建模结果表明,所提出的 CIO 涂层冷却器可以显著降低平均温度并提高整个芯片表面的温度均匀性。CIO 涂层冷却器的平均努塞尔特数可达到平面喷射冷却器的 2.8 倍。然而,CIO 涂层冷却器的多孔结构会增加总压降。为了确定具有高冷却性能和低能耗的设计,我们研究了两个关键的设计因素,即入口速度和喷嘴到 CIO 的距离。我们的分析表明,增加入口速度会进一步增强热传递,但代价是高压降。另一方面,喷嘴与 CIO 之间的距离越大,压降越小,但传热系数也会降低。通过研究流阻网络,可以进一步了解喷嘴与 CIO 之间的距离的影响。此外,我们提出了一个降阶模型,可以准确捕捉所提设计的热流体特性。
在随机环境中涉及顺序决策的优化问题。在这本专着中,我们主要集中于SP和SOC建模方法。在这些框架中,存在自然情况,当被考虑的问题是凸。顺序优化的经典方法基于动态编程。它具有所谓的“维度诅咒”的问题,因为它的计算复杂性相对于状态变量的维度呈指数增长。解决凸多阶段随机问题的最新进展是基于切割动态编程方程的成本为go(值)函数的平面近似。在动态设置中切割平面类型算法是该专着的主要主题之一。我们还讨论了应用于多阶段随机优化问题的随机临界类型方法。从计算复杂性的角度来看,这两种方法似乎相互融合。切割平面类型方法可以处理大量阶段的多阶段问题
[1] I. George、J. Lin 和 N. Lütkenhaus,“通用量子密钥分发协议的有限密钥速率的数值计算”,《物理评论研究》,第 3 卷,第 1 期,第 013274 页,2021 年。[2] D. Bunandar、LC Govia、H. Krovi 和 D. Englund,“量子密钥分发的数值有限密钥分析”,《量子信息》,第 6 卷,第 1 期,第 104 页,2020 年。
名称 σ(平均值) Tank1_Operational : 1 0 泄漏:2 0 Ignition_Source : 3 0 Tank1_Fire : 4 0 Heat_Generation : 5 0.079466567 Heat_Radiation1-2_1-3 : 6 5.12735E-18 Q2_Threshold : 7 0.033631666 Tank2_Fire : 8 0.460042475 Tank2_Operational : 9 0.460042475 Tank3_Fire : 10 0.45104425 Tank3_Operational : 11 0.45104425 Heat_Generation12/3-4 : 12 0.074827471 Heat_Radiation12/3-4 : 13 6.96572E-18 Q4_Threshold : 14 0.120061932 Tank4_Fire: 15 0.136768345 Tank4_Operational: 16 0.136768345
抽象电动汽车(EV)具有零排放和高效率的出色优势,这引起了由于化石燃料耗尽和全球全球变暖问题的关注。目前,锂离子(锂离子)电池是电动汽车中的主要能源,这是多种好处,包括高能量密度。但是,锂离子电池的性能特性和安全操作取决于其工作温度,最佳工作温度在25-40 O C之间,电池组内的温度差不超过5 OC。因此,开发有效的电池热管理系统是为了实现电动汽车高性能的有效电池热管理系统。在本研究中,考虑了21700个圆柱体锂离子电池组的热管理的浸入冷却方法。电池组的热性能特性通过电池组中的电池布置不同,电池组和介电液的不同入口/出口配置进行了全面评估。比较结果表明,使用浸入冷却方法的左右两个插座的跨板布置配置和配置和中间和右侧的两个插座可以作为有效的电池热管理系统的潜在候选者。
摘要。研究人员报告了近年来了解技术和工业过程的许多数值和分析工作。微电子,热交换器,太阳系,能量发生器只是热和传质流的最新应用。在本研究工作中研究了倾斜的渗透性表面上微极流体在倾斜的渗透表面上的二维稳定不可压缩的MHD流动,而热辐射在热辐射效应下的贡献是作为加热源。由于这种侵扰,发展了基于能量,动量,角动量,质量和浓度的问题方程的数学模型。为了将当前问题转换为无量纲的普通微分方程,已经分配了非二维变量。进化的数学模型在Mathematica中的第4阶R-K方法求解器以及第4阶R-K方法求解器以及Mathematica中的第四阶数学求解。通过数字和表显示和分析结果。最后,将皮肤摩擦,Nusselt和Sherwood编号用于不同的参数因子。为了验证此问题中使用的数值方法的准确性,我们将数值结果与可用发现进行了比较,很明显,当前工作的结果与文献中报道的结果非常吻合。改善嗜热,辐射因子和施密特数的值会降低速度。温度曲线随着粘性耗散参数的增加而增强。辐射参数的较高值,嗜热参数,微连续性在平面表面附近增加,并逐渐降低远离平面表面。浓度的曲线通过增加嗜热参数和施密特数来减少。 皮肤摩擦和传质率的曲线降低了磁场,热辐射和施密特数值。浓度的曲线通过增加嗜热参数和施密特数来减少。皮肤摩擦和传质率的曲线降低了磁场,热辐射和施密特数值。
摘要用于结构增强和改造,高级复合材料(例如碳纤维增强聚合物(CFRP)和玻璃纤维增强聚合物(GFRP))经常被使用。在土木工程中的应用需要彻底了解此类材料的行为和响应。为了预测应力 - 应变行为,当前的研究重点是CFRP和GFRP增强混凝土标本的数值模拟。abaqus用于使用C3D8R固体元素对混凝土样品进行建模。材料建模考虑了混凝土的非线性压缩行为和CFRP/GFRP的线性弹性压缩行为。这项研究与正常强度的混凝土相比,研究了载荷能力的增长,并局限于无限制的强度。通过与公开的实验结果进行比较,已经确认了数值模拟的有效性。此外,仔细检查了层数的影响。此外,还进行了用GFRP和CFRP增强的标本的应力 - 应变特性的比较。