放射线学取决于提取各种基于图像的特征来提供决策支持。磁共振成像(MRI)有助于对患者护理的个性化,但高度依赖于获取和重建参数。今天,在放射线学背景下对MR图像的最佳预处理没有指南,这对于公布基于图像的签名至关重要。本研究旨在评估MRI中通常使用的三种不同强度归一化方法(NYUL,Whitestripe,Z-Score)的影响,以及两种强度离散化方法(固定的BIN大小和固定的BIN数字)。对这些方法的影响进行了评估对从脑MRI提取的一阶放射素学特征,从而为未来的放射线学研究建立了统一的方法。使用了两个独立的MRI数据集。第一个(DataSet1)包括20名患有II级和III Gliomas的机构患者,他们接受了对比后3D轴向T1加权(T1W-GD)和T2加信的轴向T2加权流体衰减反转反转恢复(T2W-FLAIR)序列(T2W-FLAIR)序列(T2W-FLAIR)在两个不同的MR设备上(1.5 T和3.0 T和3.0 T and)。Jensen -Shannon差异用于比较标准化前后的强度直方图对。使用一致性相关系数和阶层内相关系数分析了两个采集之间一阶和二阶特征的稳定性。强度归一化高度提高了一阶特征的鲁棒性和随后的分类模型的性能。从公共TCIA数据库中提取第二个数据集(DataSet2),其中包括108例WHO II级和III级神经胶质瘤的患者,以及135例WHO IV级胶质母细胞瘤的患者。使用五种完善的机器学习算法,根据肿瘤等级分类任务(平衡精度测量)评估了归一化和离散方法的影响。For the T1w-gd sequence, the mean balanced accuracy for tumour grade classification was increased from 0.67 (95% CI 0.61–0.73) to 0.82 (95% CI 0.79–0.84, P = .006), 0.79 (95% CI 0.76–0.82, P = .021) and 0.82 (95% CI 0.80–0.85, P = 。005)分别使用NYUL,Whitestripe和Z得分归一化方法,而没有归一化。相对离散化使得不必要地将强度归一化用于二阶放射线学特征。即使离散化的垃圾箱对分类表现有很小的影响,也获得了良好的妥协