在这项工作中,Taguchi方法方法用于优化氧化石墨烯(GO)作为倒置的钙钛矿太阳能电池(IPSC)中的孔传输层(HTL)。通过使用此方法,优化了来自数值建模太阳能电池电容模拟器 - 尺寸(SCAPS-1D)的数据。尽管它具有不同的参数结果和不同的原因,但完成分析过程也需要很长时间。据报道,Taguchi方法能够找到最重要的因素并减少更少的时间的参数变化。Taguchi算法在本实验中使用,因为它基于正交阵列(OA)实验,该实验为具有最佳控制参数值的实验提供了较小的方差。SCAPS-1D软件用于使用HTL模拟IPSC。 然后分析使用软件获得的结果,并将其与太阳能电池的性能进行比较。 最终结果表明,与以前的研究人员相比,Taguchi方法与HTL相比优化了IPSC,HTL的功率转化效率(PCE)提高了,效率从18.53%.23.408%提高。SCAPS-1D软件用于使用HTL模拟IPSC。然后分析使用软件获得的结果,并将其与太阳能电池的性能进行比较。最终结果表明,与以前的研究人员相比,Taguchi方法与HTL相比优化了IPSC,HTL的功率转化效率(PCE)提高了,效率从18.53%.23.408%提高。
2024年9月15日收到; Accepted 16 th December 2024 ______________________________________________________________________________ Abstract Ocimum gratissimum , commonly known as clove basil or aromatic basil, has been traditionally utilized for its potential medicinal benefits, including anxiolytic and antidepressant effects.这项研究旨在评估Ocimum致敬的甲醇提取物的抗焦虑和抗抑郁特性,剂量为100、200和400 mg/kg PO。使用慢性不可预测的轻度应激(CUMS)模型,将小鼠分为5组(n = 6/组)。在暨暴露期间称重动物,以监测压力引起的变化。阴性对照组接受了正常的生理盐水,而阳性对照组则接受丙咪嗪(30 mg/kg PO),三个治疗组接受了提取物。使用高架的迷宫,开放式测试和强迫游泳测试评估行为反应,其体重变化被监测为应力指标。结果表明,与阴性对照相比,在所有剂量测试的所有剂量下用O. Gratiss提取物处理的动物显着降低了焦虑样和抑郁样行为。体重减轻是一个常见的压力指标,在O. Gratissimim治疗组中得到了显着缓解。这些发现表明,O。Gratissimum具有大量的抗焦虑和抗抑郁作用,更高剂量显示出更大的功效和改善的体重维持,从而支持其在管理焦虑和抑郁方面的传统用途。关键字:ocimum gratissimum;慢性不可预测的轻度压力(CUMS);焦虑般的行为;抑郁 -
根据3.5文献,来自帕拉纳大学联邦大学临床医院的肾脏科学服务的观察群研究研究的初步数据(个人数据)表明,血管瘤,肾脏复杂性,手术干预措施和慢性孩子疾病的流行更大。我们的数据警告说,这些患者的医疗保健需要改变。仍然是最常用的。此外,在与肾病学家团队进行首次评估之前,尽管已经有迹象可以使用,但使用特定治疗的患者的百分比很小(表1)。
摘要在Metazoa中研究肠道菌群的一系列数据的出现已经显着扩展了我们对Consens在控制较高生物体在规范和病理学中的广泛生理功能中的作用中的作用的理解。在肠道中,微生物负荷显着超过了其他生态系统的微生物数量,肠道微生物群的成分是诱导宿主免疫系统激活的刺激的恒定来源。在内的创新高分辨率方法的生物医学研究引入了引入,包括多态技术,它带来了改变我们对肠道分子的理解的数据,包括具有GRAS状态的益生菌,广泛用于医学,农业和生物技术。这些细菌在宿主体内诱导对细菌增殖和膨胀有益的宿主体内过程的能力表明,我们对其生命的逻辑及其与真核细胞相互作用的机制显然缺乏知识。这决定了对益生菌进行全面研究的迫切需求以及其安全评估的标准化。apriori对广泛用于医学,农业和生物技术广泛使用的细菌的特殊益处的信心已确定当今我们的控制系统的严重遗漏 - 缺乏标准化研究以确保对具有GRAS状态的细菌的安全评估。关键字:肠道,益生菌,创新技术,益生菌 - 宿主串扰,生物安全当很明显应该迅速填补这一差距时,就已经到来了,并且只有精确理解与真核细胞相互作用的分子基础,可以为有效的实际发展提供基础,以控制细菌毒力和益生菌的进化和益生菌安全策略的演变,以及避免了遗传技术的范围,从而避免了遗传技术,从而避免了遗传技术,从而避免了遗传学的进化,从而避免了对环境和管理的过程,从而避免了该过程,从而避免了该过程,从而避免了该过程,从而避免了造成的进化,从而避免了造成的进化,从而避免了遗传技术的过程,从而避免了依次的过程。微观和宏观世界。
1。Coultas J.A. 等,Thorax,2019。 74(10):p。 986-993。 2。 假A.R. 等,N Engl J Med,2005。 352(17):p。 1749-59。 3。 Papi A. M.D. 等,N Engl J Med 2023。 388(7):P595-608。 4。 美国人口普查局。 2018。 访问:10/03/2022。 可从:https://www.census.gov/data/datasets/2017/demo/popproj/2017-popproj.html。 5。 疾病控制与预防中心(CDC)。 2022。 访问:12/10/2022。 可从:https://www.cdc.gov/flu/flu/fluvaxview/coverage-20222222stimates.htm获得。 6。 文件中的数据。 国家呼吸和肠道病毒监测系统(NREVSS)2018/2019数据。 7。 属于E.A. 等,开放论坛Infect Dis,2018年。 5(12):p。 316。 8。 Diazgranados C.A. 等,N Engl J Med,2014年。 371(7):p。 635-45。 9。 鲱鱼W.L. 等,疫苗,2022。 40(3):p。 483-493。 10。 Tseng H.F.等,J Infect Dis,2020。 222(8):p。 1298-1310。Coultas J.A.等,Thorax,2019。 74(10):p。 986-993。 2。 假A.R. 等,N Engl J Med,2005。 352(17):p。 1749-59。 3。 Papi A. M.D. 等,N Engl J Med 2023。 388(7):P595-608。 4。 美国人口普查局。 2018。 访问:10/03/2022。 可从:https://www.census.gov/data/datasets/2017/demo/popproj/2017-popproj.html。 5。 疾病控制与预防中心(CDC)。 2022。 访问:12/10/2022。 可从:https://www.cdc.gov/flu/flu/fluvaxview/coverage-20222222stimates.htm获得。 6。 文件中的数据。 国家呼吸和肠道病毒监测系统(NREVSS)2018/2019数据。 7。 属于E.A. 等,开放论坛Infect Dis,2018年。 5(12):p。 316。 8。 Diazgranados C.A. 等,N Engl J Med,2014年。 371(7):p。 635-45。 9。 鲱鱼W.L. 等,疫苗,2022。 40(3):p。 483-493。 10。 Tseng H.F.等,J Infect Dis,2020。 222(8):p。 1298-1310。等,Thorax,2019。74(10):p。 986-993。2。假A.R.等,N Engl J Med,2005。352(17):p。 1749-59。3。Papi A. M.D.等,N Engl J Med 2023。388(7):P595-608。4。美国人口普查局。2018。访问:10/03/2022。可从:https://www.census.gov/data/datasets/2017/demo/popproj/2017-popproj.html。5。疾病控制与预防中心(CDC)。 2022。 访问:12/10/2022。 可从:https://www.cdc.gov/flu/flu/fluvaxview/coverage-20222222stimates.htm获得。 6。 文件中的数据。 国家呼吸和肠道病毒监测系统(NREVSS)2018/2019数据。 7。 属于E.A. 等,开放论坛Infect Dis,2018年。 5(12):p。 316。 8。 Diazgranados C.A. 等,N Engl J Med,2014年。 371(7):p。 635-45。 9。 鲱鱼W.L. 等,疫苗,2022。 40(3):p。 483-493。 10。 Tseng H.F.等,J Infect Dis,2020。 222(8):p。 1298-1310。疾病控制与预防中心(CDC)。2022。访问:12/10/2022。可从:https://www.cdc.gov/flu/flu/fluvaxview/coverage-20222222stimates.htm获得。6。文件中的数据。国家呼吸和肠道病毒监测系统(NREVSS)2018/2019数据。7。属于E.A.等,开放论坛Infect Dis,2018年。 5(12):p。 316。 8。 Diazgranados C.A. 等,N Engl J Med,2014年。 371(7):p。 635-45。 9。 鲱鱼W.L. 等,疫苗,2022。 40(3):p。 483-493。 10。 Tseng H.F.等,J Infect Dis,2020。 222(8):p。 1298-1310。等,开放论坛Infect Dis,2018年。5(12):p。 316。8。Diazgranados C.A. 等,N Engl J Med,2014年。 371(7):p。 635-45。 9。 鲱鱼W.L. 等,疫苗,2022。 40(3):p。 483-493。 10。 Tseng H.F.等,J Infect Dis,2020。 222(8):p。 1298-1310。Diazgranados C.A.等,N Engl J Med,2014年。371(7):p。 635-45。9。鲱鱼W.L.等,疫苗,2022。40(3):p。 483-493。10。Tseng H.F.等,J Infect Dis,2020。 222(8):p。 1298-1310。Tseng H.F.等,J Infect Dis,2020。222(8):p。 1298-1310。
2022 年 7 月 2 日 — 但是,如果您没有统一的资格,您可以使用您过去的表现,例如与国防部、其他部委或市政当局签订的合同,以确保您具有足够的...标准。51276 265-000 等效。G32018 215-317(或同等证书)。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativeco mmons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
电信计划和 C4I 基线架构和计划在许多领域都有关联,通过确保这些工作齐头并进,获得了协同效应。C4I 基线架构文件的草案为项目经理面试问题的制定和准备提供了重要意见。C4I 文件确定了能力方面的关键差距。这些差距与电信计划中解决的许多未来要求直接相关。电信计划的重点不同于 C4I 基线架构,因为它仅限于通信要求,但它解决了整个海岸警卫队的这些要求。因此,电信计划包含了 C4I 工作未解决的几个项目,特别是行政和支持。因此,电信计划中的并非所有要求都与 C4I 文件中讨论的关键差距直接相关。
出版物标题 E-ISSN OA 状态 ACM / IMS 数据科学杂志 2831-3194 黄金 OA ACM 计算调查 1557-7341 混合 OA ACM 进展 2153-2192 混合 OA ACM 实验算法杂志 1084-6654 混合 OA ACM 自动交通系统杂志 2833-0528 混合 OA ACM 计算与可持续社会杂志 2834-5533 混合 OA ACM 计算系统新兴技术杂志 1550-4840 混合 OA ACM 负责任计算杂志 2832-0565 混合 OA ACM 无障碍计算学报 1936-7236 混合 OA ACM 算法学报 1549-6333 混合 OA ACM 应用感知学报 1544-3965 混合 OA ACM 建筑与代码优化 1544-3973 Gold OA ACM 亚洲和低资源语言信息处理学报 2375-4702 混合 OA ACM 自主和自适应系统学报 1556-4703 混合 OA ACM 计算理论学报 1942-3462 混合 OA ACM 计算逻辑学报 1557-945X 混合 OA ACM 计算机系统学报 1557-7333 混合 OA ACM 人机交互学报 1557-7325 混合 OA ACM 计算教育学报 1946-6226 混合 OA ACM 医疗计算学报 2637-8051 混合 OA ACM 网络物理系统学报 2378-9638 混合 OA ACM 数据库系统学报 1557-4644 混合 OA ACM 电子系统设计自动化学报1557-7309 混合 OA ACM 经济学与计算学报 2167-8383 混合 OA ACM 嵌入式计算系统学报 1558-3465 混合 OA ACM 进化学习与优化学报 2688-3007 混合 OA ACM 图形学报 1557-7368 混合 OA ACM 人机交互学报 2573-9522 Gold OA ACM 信息系统学报 1558-2868 混合 OA ACM 智能系统与技术学报 2157-6912 混合 OA ACM 交互式智能系统学报 2160-6463 混合 OA ACM 物联网学报 2577-6207 混合 OA ACM 互联网技术学报 1557-6051 混合 OA ACM 数据知识发现学报 1556-472X 混合 OA ACM管理信息系统 2158-6578 混合 OA ACM 数学软件学报 1557-7295 混合 OA ACM 建模与计算机仿真学报 1558-1195 混合 OA ACM 计算系统建模与性能评估学报 2376-3647 混合 OA ACM 多媒体计算、通信与应用学报 1551-6865 混合 OA ACM 并行计算学报 2329-4957 混合 OA ACM 隐私与安全学报 2471-2574 混合 OA ACM 概率机器学习学报 2836-8924 黄金 OA ACM 编程语言与系统学报 1558-4593 黄金 OA
兽医领域正在经历高级生物技术的出现。本社论探讨了正在彻底改变动物健康和福利的基因工程,克隆,干细胞研究和诊断技术的重大进步。的突破,例如CRISPR,用于精确的遗传修饰,使用干细胞再生疗法以及复杂的分子诊断,已应用于增强疾病耐药性,提高牲畜生产率并支持野生动植物保护。但是,这些创新带有道德和监管挑战,必须仔细导航,以确保动物的福利和环境安全。在严格的法规和道德考虑的指导下,负责任的生物技术的负责应用至关重要。展望未来,如人工智能和个性化医学等新兴技术有望通过实现精确的诊断和量身定制的治疗方法进一步彻底改变兽医护理。兽医,生物技术学家和研究人员之间的跨学科合作对于利用这些进步至关重要,以使动物健康和福利受益。通过对生物技术的周到整合,兽医医学可以取得重大改进,促进更人性化的