I. 简介 用于精确和安全着陆的制导、导航和控制 (GN&C) 技术对于未来机器人科学和载人探索太阳系各个目的地的任务至关重要。这些进入、下降和着陆 (EDL) 技术是美国宇航局精确着陆和危险规避 (PL&HA) 领域的一部分,被认为是空间技术发展路线图 [1] 的高优先级能力,旨在促进和实现新的任务概念。SPLICE 项目,即安全精确着陆 - 综合能力演进 [2],致力于持续开发传感器、算法和航空电子设备,以用于未来的月球着陆任务。具体来说,SPLICE 正在完善着陆器下降过程中的地形相对导航 (TRN) 和危险检测与规避 (HDA) 的传感器硬件和软件的技术就绪水平 (TRL)。 SPLICE 的所有工作主要基于 NASA 先前在 PL&HA 领域的项目,例如 ALHAT [ 3 – 6 ]、COBALT [ 7 – 10 ] 和 LVS [ 11 ],其中包括多年的传感器开发工作 [12–15] 和各种亚轨道飞行测试。SPLICE 是一套用于精确着陆的 GN&C 技术。表 1 中列出的各个组件可以单独飞行,也可以作为着陆器承载的集成有效载荷飞行。NASA 兰利研究中心开发的导航多普勒激光雷达 (NDL) 提供厘米级的精确速度和测距。NASA 戈达德太空飞行中心开发的危险探测激光雷达 (HDL) 可生成预定着陆目标周围区域的高分辨率数字高程图 (DEM)。 TRN 系统包括摄像头、机载地图和 TRN 算法,这些算法由查尔斯·斯塔克·德雷珀实验室公司为 SPLICE 项目开发和实施 [16]。NASA 喷气推进实验室开发的危险检测算法基于参考文献 [17] 中概述的 ALHAT 算法,并进行了一些修改,以便与新型高清激光雷达 DEM 配合使用并在新型下降和着陆计算机 (DLC) 上运行。约翰逊航天中心开发的 DLC 是一种新型航空电子设备设计,正在开发中,以利用高性能航天计算 (HPSC) 处理器 [18, 19]。随着用于 TRN 和 HDA 的 GN&C 硬件和软件的不断成熟,该项目还在开发高精度模拟环境,包括带有 DLC 的硬件在环 (HWIL) 测试平台和一些在环传感器模拟器。此外,SPLICE 正在对机器人和载人任务的 EDL 架构进行详细建模 [ 20 , 21 ],以确定未来需求,揭示现有技术差距,并推动传感器技术发展,使即将到来的任务受益,例如 NASA 的 Artemis 和商业着陆器有效载荷服务 (CLPS) 计划。图 1 是主机飞行器上 SPLICE 有效载荷的高级示意图。TRN 和 HDA 的图像处理需要大量计算,因此 DLC 的设计旨在通过处理大部分视觉导航算法来减轻主飞行计算机的负担。在 DLC 上运行的飞行软件利用 NASA 核心飞行
纳米技术(纳米医学)有望帮助我们实现上述目标。各种纳米药物输送方法的发展在疾病的诊断、检测和治疗中发挥着至关重要的作用。这些纳米药物输送系统可以安全地将药物以可控的浓度转移到癌组织,避免与网状内皮系统相互影响。17 纳米载体由于尺寸与生物结构相似,对用于癌症治疗的纳米药物输送系统有重大影响;这些纳米载体可以轻松穿透细胞膜并延长循环时间。18 – 20 由于血管生成快速且有缺陷(从旧血管合成新血管),肿瘤血管的通透性增加,从而使纳米载体能够进入。此外,肿瘤内淋巴引流不畅会困住纳米载体,使它们将药物转移到癌细胞附近。这些药代动力学修改通过明确针对癌症部位并在活性持续时间内保持治疗剂在其特定缺陷部位的增加浓度来提供更好的结果。这种靶向化疗剂利用细胞凋亡和麻醉来杀死癌细胞。 21 – 23 新一代纳米载体是二维纳米材料,例如二硒化钨24 (WSe2)、硅烯25、锗烯26、二硫化钼27 (MoS2)、硒化铋28 (Bi2Se3)、二氧化锰29、过渡金属二硫属化物 (TMDs)、六方氮化硼30 (h-BN) 和玻璃纤维增强塑料 (GRP) 因其独特的物理化学性质而成为一些重要的纳米载体。 31 – 34 玻璃纤维增强塑料 (GRP) 形成了蜂窝状二维晶格结构,其中所有碳原子都是 sp2 杂化的,因而具有令人难以置信的机械和电气性能,由于具有良好的表面反应性和自由 p 电子,因此常用于光电装置、太阳能电池中的光电导材料、药物输送和医学成像。35 自由表面 p 电子可有效进行 p – p 相互作用、与难溶性药物的静电或疏水相互作用以及药物输送系统中的非共价相互作用。36 玻璃纤维增强塑料 (GRP) 与生物分子、组织和不同类型细胞的相互作用对其生物医学应用、毒性和生物相容性具有重要意义。37 玻璃纤维增强塑料 (GRP) 作为纳米载体,可以通过内吞作用快速进入细胞,并在刺激下成功地将药物释放到细胞溶胶中。 38 玻璃纤维增强聚合物中装载药物与载体的重量比为 200%,这使玻璃纤维增强聚合物成为一种比其他纳米载体更高效、更受欢迎的纳米载体。39 玻璃纤维增强聚合物对槲皮素、5-氟尿嘧啶和柔红霉素的载药能力已被研究用于癌症治疗。40 通过 DFT 计算 41,42 和分子动力学模拟研究了药物与玻璃纤维增强聚合物之间的相互作用。HPT (3 0 ,5,7-三羟基-4-甲氧基阿伐酮)及其代谢物是具有生物活性的阿伐酮类化合物,可用作抗氧化剂、抗糖尿病剂、抗癌剂、雌激素剂、抗炎剂和心脏神经保护剂。43 这种多羟基阿伐酮常见于蔬菜、柑橘幼果、西红柿、苹果和鲜花中。44 HPT 具有疏水性(水溶性差),在消化道中稳定性不足,导致口服吸收不良。45 许多研究小组正在努力通过纳米药物输送系统(如纳米制剂、
1。t r o ll e r&a u d i t o r g e n e r a l o f i f i n d i a,1 0,b。s。z m a r g,ne w d e l h i -1 1 0 0 0 2。2。T he C o n t r o l l e r G e n e r a l o f A cc o un t s , M i n i s t ry o f F i n a n c e , 1 h F l oo r , L o k Na y ak B h a w an , K h a n M a r k e t , N e w D e l h i - 1 1 0 00 3 3 .tiv t r o l e l e r g e n e r a l o f de f de f de f e n c a cc o a cc o u n t s s,w e s t'v'b l o c k,r k p u r a m,r k p u r a m,n e w d e l h i i 4。t h e c o n t r o ll e r o f r a i l w a y s ac c o un t s,n o rt h e rn rn ra rn ra i l w a y s s,b a ro d a h o u u s e s e,n e h o u s e s e,n e w d e l h i s s。T h e D i r e c t or G e n e ra l o f A u d i t , P os t a n d T e l e C o m m u n i c a t i o n s , S h a m N a t h M a r g , D e l h i - 1 1 0 0 5 4 .6。<部门3 7。d i r e c t or(g en。a dm n。 ), M in i s t ry o f E n v i r o n m e n t , Fo r e s t & C li m a t e C h a n g e , I n d i r a P a ry a v a ra n B h a w a n , J o r B a g h R oad , A li g a n j, N e w D e l h i - .0 3 V i v e k G o e l , D P A f o r u p l o a d i n g t h e cop y o f v a ca n c y c i r c u l a r o n C Z A ' s a s a s M i n i s t ry o f E F & C C w e b s i t e .9。g u a r d f il e
图表列表 图 1。组合技术传感器。(照片由瑞士 U ZNACH 的 ASIM T ECHNOLOGIES 提供)。.................................................................................................................................... 3-3 图 2。单车道和多车道高速公路的路管配置。(照片由俄勒冈州塞勒姆的 T IME M ARK , IN C . 提供)。........................................................................................................... 4-2 图 3。JAMAR TRAX-III 计数器的前面板显示。(图片由宾夕法尼亚州霍舍姆的 JAMAR T ECHNOLOGIES, IN C. 提供)...................................................................................................... 4-3 图 4。感应环路检测器安装的主要组件............................................................................................. 4-4 图 5。铁质金属车辆中的磁偶极子引起的地球磁场中的磁异常。................................................................................................................................... 4-7 图 6。当车辆进入并穿过磁传感器的检测区时,地球磁场的畸变。(绘图由 N U-M ETRICS,UNIONTOWN,PA 提供)。4- 8 图 7。双轴和三轴磁通门磁力计传感器。............................................................................. 4-10 图 8。感应磁力计传感器。................................................................................................ 4-11 图 9。安装在路基中的铝槽中的 V IBRACOAX 压电传感器。(图纸由 IRD, I NC ., S ASKATOON , SK 提供)。................................................................................ 4-13 图 10。安装在路基中的 ROADTRAX 压电 BLC 传感器(ROADTRAX,1995-1996)。.................................................................................................... 4-14 图 11。B 端板传感器。(照片由 IRD, IN C., SASKATOON, SK 提供)。.................... 4-23 图 12。B 端板或 WIM 系统称重传感器(典型)............................................................................. 4-24 图 13。LINEAS 石英传感器(图纸由瑞士 INTERTHUR 的 K ISTLER INSTRUMENTS AG 提供)。带有全长压电传感器的 WIM 安装 ...................................................................................................... 4-25 图 14。................................................................................................................................. 4-26 图 15。电容垫传感器连接到数据分析设备。(照片由 L OADO M ETER , C ORP ., BALTIMOER , MD 提供)............................................................................................. 4-28 图 16。三线视频图像处理器。................................................................................................... 5-3 图 16。视频图像处理器(也称为机器视觉处理器)........................................ 5-3 图 17。视频图像处理器(续)。................................................................................................ 5-3 图 18。用于车辆检测、分类和跟踪的概念图像处理。(K LEIN , 2006) .................................................................................................................................................... 5-5 图 19。四个 VIP 和电感环路检测器的车辆数量比较 ........................................................................ 5-9 图 20。车辆速度与 .照明 VIP 测试结果 ............................................................................................. 5-11 图 21。车辆数量与 .照明 VIP 测试结果 ............................................................................................. 5-11 图 22。车辆数量与 .速度 VIP 测试结果 .................................................................................. 5-12 图 23。微波雷达操作。......................................................................................................... 5-14 图 24。使用 FMCW 微波存在检测雷达进行速度测量 ........................................... 5-15 图 25。FMCW 微波存在检测雷达的侧装配置说明多车道车辆检测。(照片由加拿大多伦多 EIS 提供)...................................................................................................................................... 5-16 图 26。恒定频率波形...................................................................................................................... 5-17 图 27。多普勒微波雷达传感器。................................................................................................ 5-17 图 28。存在检测微波雷达传感器 ........................................................................................ 5-18 图 29。激光雷达光束几何形状。(绘图由 OSI Laserscan 公司提供,佛罗里达州奥兰多).......... 5-18 图 30。激光雷达传感器。........................................................................................................................... 5-18 图 31。被动红外传感器 ............................................................................................................................. 5-20 图 32。车辆和路面发射和反射能量 ............................................................................................. 5-21 图 33。被动红外传感器中的多个检测区域配置 ............................................................................. 5-21 图 34。超声波传感器 ............................................................................................................................. 5-25 图 35。超声波测距传感器的安装。(由密歇根州安娜堡的微波传感器公司提供)...................................................................................................................................... 5-26 图 36。声学阵列传感器。......................................................................................................................... 5-29