会损害另一种药物的吸收,从而导致可能致命的药理作用。由于有关 OATP 抑制机制的信息有限,并且不同研究中的实验性 OATP 抑制数据不一致,因此预测 OATP 介导的 DDI 具有挑战性。本研究引入了异构 OATP-配体相互作用图神经网络 (HOLIgraph),这是一种新颖的计算模型,它将分子建模与图神经网络相结合,以增强对药物诱导的 OATP 抑制的预测。通过将配体(即药物)分子特征与来自严格对接模拟的蛋白质-配体相互作用数据相结合,HOLIgraph 的表现优于仅依赖配体分子特征的传统 DDI 预测模型。HOLIgraph 在预测 OATP1B1 抑制剂时实现了超过 90% 的中位平衡准确度,明显优于纯基于配体的模型。除了改善抑制预测之外,用于训练 HOLIgraph 的数据还可以表征参与抑制药物-OATP 相互作用的蛋白质残基。我们确定了某些优先与抑制剂相互作用的 OATP1B1 残基,包括 I46 和 K49。我们预计此类相互作用信息将对未来对 OATP1B1 的结构和机制研究很有价值。科学贡献。HOLIgraph 通过将对接模拟得出的蛋白质-配体相互作用纳入图神经网络框架,为 DDI 预测引入了一种新范式。这种方法得益于 OATP1B1 的最新结构突破,与仅依赖配体特征的传统模型有很大不同。通过实现高预测准确性和揭示机制见解,HOLIgraph 为药物设计和 DDI 预测中的计算工具设定了新的轨迹。
有机阴离子运输多肽(OATP)对于肝药物摄取至关重要,影响了药物疗效和毒性。预测OATP介导的药物相互作用(DDIS)由于结构性数据有限和整个研究的实验性OATP抑制数据而具有挑战性。这项研究介绍了异质的OATP-rigand相互作用图神经网络(HOLI-GNN),这是一种新型的计算方法,将分子建模与图神经网络相结合,以增强OATP介导的药物抑制的预测。通过将配体分子特征与蛋白质配体相互作用数据相结合,Holi-GNN的表现优于传统的基于配体的方法。与基于ECFP和RDKIT的模型相比,HOLI-GNN的中位数F1和AUC得分分别为0.78和0.90,分别基于XGBoost(F1:0.68和0.78; AUC:0.70和0.75)。除了改善抑制预测之外,我们还表征了与抑制性药物相互作用相对于非抑制性药物相互作用的蛋白质残基,特别是突出了残基T42,F224,I353,F356和F386。我们推测这些疏水堆积残基或抑制作用的局部位置可能是竞争性抑制机制的重要方面。我们的模型增强了OATP抑制剂预测的性能,并批判性地提供了可解释的交互信息,以告知未来的机械调查。