哥伦比亚首都波哥大市交通十分繁忙,因为所有交通系统都汇聚于此,而波哥大本身就是该国的商业、文化和工业中心。随着城市的增长和经济发展,市内流通的车辆数量逐年增加,主要集中在大都市区。由于这种现象,人们观察到城市道路网络的恶化,因此有必要寻找可以缓解这一问题的替代方案。在此背景下,本研究的主要目的是利用地理研究所“Agustín Codazzi”制作的正射影像对波哥大城市道路的路面类型进行分类,这些影像由高空间分辨率相机 Vexcel UltracamD 获取,以便找到绘制需要恢复的道路的替代方案。为了评估该方法,在小型市中心区域开展了一项研究,使用 Ecognition 软件中实现的 OBIA(基于对象的图像分析)方法。结果表明,OBIA 方法可以生成研究区域路面类型的专题地图,准确率为 58.19%(Kappa)。
E.1 Main Findings 203 E.2 Dimension Description 205 E.3 Vision and Institutional Framework Subdimension 209 Success Story Humboldt Cable: A Joint Effort Between Google and the Chilean State for Latin American Connectivity 220 Success Story RAM Methodology: A GPS for Implementing National AI Policies 226 Success Story OBIA: The Launch of the Brazilian Observatory 231 E.4 International Engagement Subdimension 234 E.5 Regulation Subdimension 236关于拉丁美洲和加勒比海人工智能立法和法规的报告分析和建议240
有效管理海草栖息地需要有关海草状况和分布的详细信息。本文介绍了一项更大规模研究的第一步,该研究旨在评估波多黎各卡哈德穆埃托斯岛自然保护区内海草分布的长期变化。使用 WorldView-2 (WV-2) 图像和现场数据集对保护区内的海草床进行了高空间分辨率表征。WV-2 得出的海底反射率和水深测量数据用于进行基于对象的图像分析 (OBIA)。此分析的波段选择基于现场光谱水衰减测量。通过监督分类和上下文编辑对 OBIA 的结果多边形进行分类。使用 164 个采样点对图像进行了校准和验证。与传统的精度评估工具一起,创建了可靠性图,以提供评估地图精度的另一个指标。总体准确率为 96.59%,总海草准确率为 100%。海草床主要位于岛屿的西部和北部,主要由 Thalassia testudinum 和 Syringodium filiforme 组合组成。结果表明,光照可用性不是研究区域海草定植的限制因素,强波浪能可能是调节海草分布的重要因素。这张海草栖息地地图改进了之前的测绘工作,是该保护区的第一张高空间分辨率地图。事实证明,所使用的数据和方法对于在高度复杂的底栖环境中绘制海草栖息地地图非常有效。
在葡萄栽培中,通过超高的空间分解图像快速而准确地获取了冠层光谱信息以进行决策支持。普遍的做法涉及使用从纯藤冠像素获得的光谱数据创建活力图。基于对象的图像分析(OBIA)在常规方法中表现出由于其特征提取的功能而在树冠分类中表现出合理的效率。近年来,深度学习(DL)技术在果园监测中表现出了巨大的潜力,并利用了它们自动学习图像特征的能力。这项研究评估了不同方法的性能,包括掩盖R-CNN,U-NET,OBIA和无监督方法,以识别纯冠类像素。比较了阴影和背景检测方法的有效性以及错误分类像素对NDVI的影响。将结果与2021年和2022年生长季节进行的农艺调查进行了比较,重点是两个不同的物候阶段(BBCH65-BBCH85)。蒙版R-CNN和U-NET在整体准确性(OA),F1得分和与联合(IOU)相交方面表现出卓越的性能。在OBIA方法中,高斯混合模型(GMM)被证明是冠层分割的最有效的分类器,并且支持向量机(SVM)也表现出合理的稳定性。相反,随机森林(RF)和K-均值的准确性和较高的错误率产生了较低的误差率。由于准确性有限,因此在葡萄园行高的葡萄园排被高估了,而对于高活力的檐篷,NDVI被低估了。可显着提高确定系数,以进行总叶面积(TLA)与源自蒙版R-CNN和U-NET得出的NDVI数据之间的比较。还发现了来自GMM和SVM算法的NDVI数据的正相关性。关于叶叶绿素(CHL)和NDVI相关性,蒙版R-CNN和U-NET方法显示出较高的性能。此外,TLA和投影冠层区域(PCA)之间的关系得到了U-NET和Mask R-CNN的明显代表,而不建议使用PCA来估计叶绿素含量。这项调查确定,改善了葡萄树冠划界的贡献,可改善葡萄园活力监测,为葡萄酒生长提供了更准确,更可靠的农艺信息,以进行管理决策。
sspa«白俄罗斯NAS的科学实行材料研究中心»,220072,明斯克,白俄罗斯B核研究所联合研究所,141980年,俄罗斯dubna,俄罗斯C大学“ Dubna”,141982,DUBNA,俄罗斯,可再生能源和环境技术中心,Tabik e Aripia,Tabia obia of Aripia of Aripia of Aripia of Aripia of Aripia of Aripia,SASAUKIA,SASAICA,SA.14。 1162年,安曼(Amman),约旦F资源与环境系,冶金学院,东北大学,伊利亚宁省,Shenyang,110819,PR中国G民用与环境工程系,香港理工学院,Hong Polytechnic University,Hong Hong Hong Hong Hong Hong Hong Hong H MIIT材料的关键材料,用于新的能源和储存的关键材料,化学,化学,化学技术,化学技术,Harb,Harb harb harb harb公关中国乌拉尔联邦大学,伊卡特林堡Mira St. 19Sechenov First Moscow State医科大学,莫斯科,119435,俄罗斯Sechenov First Moscow State医科大学,莫斯科,119435,俄罗斯
低空遥感用 RPAS 技术和增强成像用微型传感器的蓬勃发展,推动了海洋生态应用的增加。然而,可见电磁波谱中传感器的 RPAS 的普遍性可能会限制沿温带潮间带岩礁的生物海洋栖息地的精细测绘、监测和识别应用。在这里,我们使用低成本 RPAS 结合多光谱传感器 (MicaSense® RedEdge™) 和基于对象的图像分析 (OBIA) 工作流程,在新西兰奥克兰怀特玛塔港制作生物牡蛎礁的超高分辨率地图。结果表明,可见电磁波谱以外的光谱带逐渐增强了图像上的特征检测,并增加了在异质海洋生态系统中描绘目标特征的潜力。使用基于规则的分类技术提取目标特征,基于分割后的光谱特征,总体准确率为 83.9%,kappa 系数为 69.8%。使用附加光谱带可提高牡蛎礁栖息地测绘的光谱分辨率。高空间尺度监测和测绘浑浊的潮间带岩礁带来了独特的挑战,但这些挑战可以通过在理想的气象和海洋条件下使用 RPAS 进行目标飞行来缓解。
用于低空遥感的 RPAS 技术和用于增强成像的微型传感器的蓬勃发展,导致了海洋生态应用的增加。然而,带有可见电磁波谱传感器的 RPAS 的普遍性可能会限制沿温带潮间带岩礁的生物海洋栖息地的精细测绘、监测和识别应用。在这里,我们使用低成本的 RPAS 结合多光谱传感器 (MicaSense® RedEdge™) 和基于对象的图像分析 (OBIA) 工作流程,在新西兰奥克兰怀特玛塔港制作了生物牡蛎礁的超高分辨率地图。结果表明,具有可见电磁波谱以外的光谱带逐渐增强了图像上的特征检测,并增加了在异质海洋生态系统中描绘目标特征的潜力。使用基于规则的分类技术提取目标特征,基于分割后的光谱特征,总体准确率为 83.9%,kappa 系数为 69.8%。使用附加光谱带可提高牡蛎礁栖息地测绘的光谱分辨率。高空间尺度监测和测绘浑浊的潮间带岩石礁带来了独特的挑战,但这些挑战可以通过在理想的气象和海洋条件下使用 RPAS 进行瞄准飞行来缓解。
土地覆盖类别包括:树冠、草地和灌木(包括农田)、建筑物、不透水层(街道、车道和停车场)、水和裸土。主要土地分类是使用 eCognition Developer 8.0 版中提供的基于对象的图像分析 (OBIA) 技术进行的。该项目使用的辅助软件包括 ArcGIS 9.3.1 版和 ERDAS Imagine 2010 版。使用 Python 2.5 版脚本语言编写了其他自定义例程,以支持所需的处理。圣保罗市提供了 Shapefile 信息,以帮助识别街道、建筑物、道路和高速公路以及水景。实施该项目遵循了以下主要步骤:• 使用 ERDAS Imagine 中的减法分辨率对 QuickBird 影像进行全色锐化。• 利用可用的 RPC 文件和 30 米 DEM 层对 QuickBird 影像进行地理配准。• 对激光雷达数据进行地理配准以匹配 QuickBird 影像。• 使用自定义 Python 脚本将地理配准影像划分为 750 x 1000 米的图块,重叠度为 10%,以便进一步处理。此步骤创建了 180 个单独的图块。• 包含道路信息的街道图层在 ArcGIS 中缓冲一米,以创建多边形形状文件,随后在 eCognition 中使用。• 开发了三套规则来处理城市的以下子部分:o 西部小部分,包括六月的 QuickBird 和激光雷达数据。o 城市东侧的 1,500 米带,有 5 月份的 QuickBird 影像,但没有激光雷达数据。o 城市其余大部分区域有 5 月份的 QuickBird 和激光雷达数据。• 3 个规则集中的每一个都使用类似的过程创建: o 检查影像以找到代表性图块。o 创建支持性影像层,例如归一化差异植被指数。(NDVI) 和 Lee 的 Sigma 边缘提取有助于提高分类效率。o 从 Shapefile 生成表示道路和水特征的图像对象,并按此进行分类。o 如果有激光雷达数据,则首先将图像分割成高特征和短特征。o 利用 eCognition 中提供的算法对图像的剩余部分进行分类,利用光谱信息以及图像解释的其他元素,例如上下文、形状、大小、位置、关联、图案、阴影和纹理。o 将分类从 eCognition 导出到 TIF 光栅文件中。• 每套规则都经过了微调,并在城市中额外的随机图块上进行了测试。• 使用 eCognition Server,每个最终规则集都用于对圣保罗所有部分的所有图块进行分类。• 使用 ERDAS Imagine Mosaic Pro 中的几何接缝线将各个分类图块连接成一个马赛克。• 城市的三个不同部分(由 402 个单独的图块表示)被合并到一个分类文件中。