活细胞中病毒感染的实时感知对于病毒学研究和抗病毒药发育至关重要。但是,现有方法面临低信号灵敏度的挑战以及病毒操纵和细胞固定的必要性。在这里,我们开发了一种病毒核糖开关(VRIBO)方法,该方法采用病毒复制酶在病毒感染后诱导转基因表达。Vribo旨在检测活细胞中的病毒实时转录和复制,这响应触发了报告基因和治疗基因的翻译。通过整合病毒包装序列,可以通过后代病毒体将Vribo传播到相邻细胞,从而有效地充当“特洛伊木马”。由于跨冠状病毒的顺式作用RNA结构保存,负链Vribo元件显示出有效检测了几种冠状病毒,包括229E和OC43。值得注意的是,Vribo充当双重用途系统,既充当感染检测器和诱导抗病毒系统。vribo具有基本病毒学研究应用的潜力,可以在改善未来冠状病毒的mRNA药物的诱导表达方面采用。
引言严重的急性呼吸道综合症电晕病毒2(SARS-COV-2)是一种致命的呼吸道疾病的原因,称为冠状病毒疾病(COVID-19)[1]。这是在2019年12月在中国湖北省武汉市首次作为β菌株[2]确认。它是一种RNA病毒,是电晕病毒家族中的第七个病毒[3]。在这些中,引起轻度呼吸流感像季节性疾病的轻度呼吸流感的四种相对“良性”菌株是(HCOVS)229E,NL63,OC43和HKU1和三种极为病的菌株(SARS-COV,MERS-COV,MERS-COV,MERS-COV,MERS-COV,中东呼吸道综合症Corondrome Corondrome Coronverome Coronverome corondrome corondrome coronverome corondrome)和SARS-COV和SARS-COV-3 [4)。SARS-COV-2是过去20年中出现的第三次电晕病毒爆发,仅次于SARS和MERS [5]。它属于家族冠状病毒和nidovirales [4]。这是一种高度感染的阳性,单链的RNA病毒[6]。它具有一个包膜,单链的RNA病毒,其基因组包含29,891个核苷酸,该核苷酸编码了12个推定的开放式阅读框架,负责合成病毒结构和非结构性蛋白质[4]。
SARS-CoV-2 可通过内吞吸收感染细胞,该过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种治疗病毒感染的方法结果好坏参半,一些研究详细介绍了羟氯喹的口服方案,并伴有明显的脱靶毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加药物在靶点的浓度。在这里,我们描述了一种溶酶体靶向的、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒内吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100 – 150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2 WA1 及其 Omicron 变体。细胞器靶向递送是抑制病毒感染的有效方法。
SARS-CoV-2 可通过胞吞吸收感染细胞,该过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种治疗病毒感染的方法结果好坏参半,一些研究详细介绍了羟氯喹的口服方案,并伴有明显的脱靶毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加药物在靶点的浓度。本文我们描述了一种溶酶体靶向、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入方式进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒胞吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100-150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2-WA1 及其 Omicron 变体。这项研究表明,细胞器靶向递送是抑制病毒感染的有效方法。
2019 年 12 月,一种名为严重急性呼吸综合征相关冠状病毒 (SARS-CoV-2) 的新型冠状病毒在中国武汉出现,并迅速蔓延至全球。继严重急性呼吸综合征相关冠状病毒 (SA-RS-CoV) 和中东呼吸综合征冠状病毒 (MERS-CoV) 之后,SARS-CoV-2 是本世纪第三种导致大流行的人畜共患冠状病毒。SARS-CoV-2 导致 2019 年冠状病毒病 (COVID-19) 1-4。迄今为止,根据世界卫生组织 (WHO) 的报告,全球已有超过 1 亿人感染 COVID-19,超过 200 万人死于该疾病。SARS-CoV-2 是一种正义 RNA 病毒,基因组大小约为 ~27 至 ~32 kb。 SARS-CoV-2 属于冠状病毒科,可感染多种鸟类和哺乳动物,例如人类。由于其宿主范围广和冠状病毒重组频率高,因此在该科中产生高毒力病毒很常见。最常见的人类冠状病毒可引起轻微感染,例如普通感冒,包括人类冠状病毒 NL63 (HCoV- NL63)、人类冠状病毒 229E (HCoV-229E)、人类冠状病毒 OC43 (HCoV-OC-43) 和人类
One of the most contagious viruses, better known as the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), formerly known by the 2019 novel coronavirus (2019‐nCoV), has been recognized as an emerging strain added to the Human coronavirus (CoV) family, which causes the most infectious COVID-19 disease affecting our life drastically.有四个属的covs。,即α,β,γ和δ,其中前两个感染了哺乳动物,而后来有两个引起鸟类的感染。除了中东呼吸道综合征(MERS-COV)和SARS-COV-2外,它们分别负责2002 - 2003年2002 - 2003年和2012年中东的呼吸道感染,其中有四种常见类型的人类COV类型,包括229E(α-COV),包括NL63(NL63(NL63),NL63(α-COV),OC43(α-COV),β-COV(β-COV),以及β-COV,以及HKU1(β-CU)(HKU)(HKU)(HKU)(HKU1)在健康个体中引起轻度呼吸道感染。1-3根据2022年1月27日的世界计统计数据,363,941,212 Covid-19案件,有287,993,289次回收率,全世界记录了5,647,818例死亡。 4戴着面具,经常洗手,基于酒精的消毒,社交距离,锁定和在家工作是正在进行的大流行中的新常态。 尽管采用了所有COVID-19的安全方案和措施,健康的生活方式,合适的药物和建议的疫苗接种剂量,但没有人可以预测未来。 专家认为,该病毒会根据环境改变其性质,并获取可能轻度至重度的突变。 美国,印度,巴西,法国,英国,俄罗斯,土耳其,意大利,西班牙和德国都被排名前十个国家中的十九个案件,比其他任何国家都高。1-3根据2022年1月27日的世界计统计数据,363,941,212 Covid-19案件,有287,993,289次回收率,全世界记录了5,647,818例死亡。4戴着面具,经常洗手,基于酒精的消毒,社交距离,锁定和在家工作是正在进行的大流行中的新常态。尽管采用了所有COVID-19的安全方案和措施,健康的生活方式,合适的药物和建议的疫苗接种剂量,但没有人可以预测未来。专家认为,该病毒会根据环境改变其性质,并获取可能轻度至重度的突变。美国,印度,巴西,法国,英国,俄罗斯,土耳其,意大利,西班牙和德国都被排名前十个国家中的十九个案件,比其他任何国家都高。4然而,实际的共同199感染,恢复和死亡计算是
引言严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 是一种人畜共患病原体,属于 Betacoronavirus 家族,于 2019 年 12 月在中国武汉出现。SARS-CoV-2 迅速席卷全球,引发冠状病毒病 (COVID-19) 大流行,感染超过 2240 万人,导致至少 789,455 人死亡(约翰霍普金斯大学,2020 年 8 月 20 日访问)1。在七种导致人类呼吸道疾病的冠状病毒中,有四种仅引起轻度感染(229E、NL63、OC43 和 HKU1),三种是高致病性(SARS-CoV、MERS 和 SARS-CoV-2)。SARS-CoV-2 最有可能起源于蝙蝠,并通过中间动物宿主传播给人类,就像其他高致病性人类冠状病毒 MERS 和 SARS-CoV 2 一样。 SARS-CoV-2 高传染性和致病性的分子决定因素仍是假设的,但刺突蛋白中获得弗林蛋白酶切割位点以及受体结合域发生突变使得刺突蛋白能够与人血管紧张素转换酶 (ACE2) 结合似乎是关键/重要因素 3 – 5 。这些以及其他可能存在的分子特征使得 SARS-CoV-2 成为三种致病冠状病毒中传播性最强的。与 SARS 不同,在有效疫苗问世之前,SARS-CoV-2 可能不会被消灭甚至无法控制。已发现 ACE2 受体介导 SARS-CoV-2 以及其他冠状病毒(包括 NL63 和 SARS-CoV)进入细胞,SARS-CoV-2 与后者有 76% 的氨基酸同一性 5 。表达 ACE2 的细胞易受 SARS-CoV-2 刺突 (S) 糖蛋白的影响,该糖蛋白从 SARS-CoV-2 病毒体膜表面伸出并充当配体 2 。在人类中,中和抗体和/或 T 细胞免疫反应是针对几种 SARS-CoV-2 蛋白产生的,但主要针对 S 蛋白,这表明 S 蛋白特异性免疫反应在保护中起着重要作用 6 。因此,目前大多数疫苗方法都使用 SARS-CoV S 蛋白或其部分作为疫苗免疫原 7 。
摘要:冠状病毒(CoV)是一大类有包膜的单链人畜共患 RNA 病毒。四种冠状病毒在人类中普遍传播:HCoV2-229E、-HKU1、-NL63 和 -OC43。然而,冠状病毒可以快速变异和重组,从而产生可以从动物传播到人类的新型冠状病毒。2002 年出现的新型冠状病毒严重急性呼吸综合征冠状病毒(SARS-CoV)和 2012 年出现的中东呼吸综合征冠状病毒(MERS-CoV)。2019 年新型冠状病毒(SARS-CoV-2)目前正在中国和其他多个国家引起严重疾病爆发(称为 COVID-19),有可能引发全球大流行。在人类中,冠状病毒主要引起呼吸道和胃肠道症状。临床表现范围从普通感冒到更严重的疾病,如支气管炎、肺炎、严重急性呼吸窘迫综合征、多器官衰竭甚至死亡。与成人相比,SARS-CoV、MERS-CoV 和 SARS-CoV-2 似乎不太常见于儿童,并且在这个年龄组中引起的症状更少、疾病更不严重,而且病死率也低得多。初步证据表明,儿童感染 SARS-CoV-2 的可能性与成人一样大,但出现症状或出现严重症状的可能性较小。然而,儿童在传播病毒方面的重要性仍不确定。与成人相比,儿童更容易出现胃肠道症状。大多数感染 SARS-CoV 的儿童会出现发烧,但其他新型冠状病毒并非如此。许多感染 MERS-CoV 的儿童没有症状。大多数感染新型冠状病毒的儿童都有记录在案的家庭接触,通常会在感染前出现症状。相比之下,成人更常有院内接触。在这篇综述中,我们总结了人类常见和新型冠状病毒感染的流行病学、临床和诊断发现,以及治疗和预防方案,重点关注儿童感染。
冠状病毒之所以被命名,是因为装饰其表面的尖峰蛋白的光环[1,2]。这些S蛋白具有特定细胞受体与宿主细胞结合的特定细胞受体,然后是蛋白酶介导的S蛋白裂解,该蛋白蛋白裂解暴露了促进病毒EN尝试的融合促进域。SARS-COV-2通过其S蛋白与血管紧张素I在靶细胞上转化酶2(ACE2)Re型的血管紧张素I之间感染细胞。ACE2在肾素 - 血管紧张素系统中起关键的调节作用,该系统调节血压,盐和水平衡[3]。感染需要S蛋白质裂解,可能由宿主细胞丝氨酸蛋白酶TMPRSS2(TransMem Brane蛋白酶,丝氨酸2),尽管也可能涉及其他蛋白酶。SARS-CoV-2 belongs (Severe acute respiratory syn drome-related coronavirus 2) to the coronavirus family, which includes the pandemic MERS-CoV (Middle East respiratory syn drome coronavirus) and SARS-CoV (SARS (Severe acute respira tory syndrome)-associated coronavirus) and the lesser known but more common endemic coronaviruses HCoV-OC43 (人冠状病毒OC43),HCOV-HKU1,HCOV-229E和HCOV-NL63。特有的冠状病毒会感染上呼吸道,并频繁引起普通感冒,这反过来又与气味和味道的急性和慢性变化有关[4,5]。SARS-COV还使用ACE2作为其主要受体,在一个案例研究中,SARS-COV感染急性病毒介导的气味变化的主要机制包括由于粘膜肿胀而导致通气损失引起的导电缺陷,粘液产生增加,粘液组成的变化,粘液组成的变化以及嗅觉信号的次要变化以及局部释放的诸如colied coilsied coil synemiss andery机制的局部释放引起的嗅觉信号的变化,导致多种机制的释放,导致多种机制释放,导致其造成的流行。嗅觉缺陷倾向于使用类似于其他与冷相关的Symp Toms(如鼻充血)和HCOV-NL63(HCOV-NL63)相似的时间过程,而特有的冠状病毒不将ACE2用作其主要的细胞受体[6],这是一种可能基本的分子诊断,可能是致病物理学中关键差异的基础。
世界卫生组织已经采取了所有合理的预防措施,以验证本出版物中包含的信息。但是,已发表的材料是在没有任何形式的任何形式的保证的情况下分发的。材料解释和使用的责任在于读者。在任何情况下,世界卫生组织都不应对其使用造成的损害负责。单独指定的作者负责本出版物中表达的观点。摘要来自七个国家的十个实验室已参加了一项合作研究,以评估提出的7种参考病毒股票的适用性,该参考病毒股票是通过高通量测序(HTS)在生物学产品中检测到的第1股WHO国际参考小组。五个参与的实验室提供了简短的HTS数据,以及时提交本报告,该报告支持建立7种病毒股票,作为用于平台评估和HTS验证的参考小组,以供HTS验证用于偶然病毒检测。选择这些病毒来表示具有不同物理化学和基因组特性的多种病毒家族,以评估HTS在生物制剂中检测HT的能力。病毒小组包括Epstein-Barr病毒(EBV;也称为人疱疹病毒4),哺乳动物矫形病毒1型(REO),人呼吸道综合病毒(RSV),猫氏白血病病毒(FELV),猪circovirus ockovirus and bet ciruus oc1 oc41(pcvirus ocv1)(Hcov1小鼠(MVM)。此外,自修订后的ICH在病毒面板中添加HCOV和MVM扩展了前5名WHO引用HTS不定病毒检测试剂(成立于2020年10月),并且病毒面板中的小瓶数量有更多的小瓶可长期可用。Similar to the previous study for establishment of the 5 WHO reference reagents, the 7 viruses were spiked together at 10 4 genome copies per mL of each virus into 10 9 genome copies per mL of adenovirus 5 (Ad5) to evaluate the breadth of virus detection by HTS (using targeted bioinformatics analysis) in a high-titer virus back ground mimicking a low-complexity biological sample (with reduced细胞材料),例如病毒疫苗种子或病毒载体制备。每个实验室都使用一个共同的方案来制备加标样品,然后遵循自己的HTS工作流程(样品处理,cDNA合成,库准备,测序和生物信息学分析)的协议。本报告中提出的结果表明,5个实验室在10 4-10 5尖峰水平上检测到了所有7种病毒。实验室之间的病毒检测差异是对HTS工作流中使用的不同方案的反映。在两个实验室的结果中没有看到显着差异,这些实验室进行了三个独立的HTS实验,表明该技术的可重复性。这项研究证明了使用HTS的7个病毒小组对平台评估和验证研究的适用性,用于使用HTS进行广泛的病毒不定剂检测已知和未知病毒的检测。
