地点、经济增长和环境审查委员会 2024 年 6 月 11 日 奥尔德姆经济计划 1 背景 1.1 《奥尔德姆经济评论》(OER)最初于 2022 年 3 月发布,由独立专家小组进行,重点研究奥尔德姆持续和积极经济增长的机会。 1.2 在 OER 工作的基础上,奥尔德姆经济委员会于 2023 年 7 月成立,属于更广泛的奥尔德姆经济伙伴关系的范畴。经济委员会由来自商业、教育和更广泛的公共部门合作伙伴的一系列利益相关者组成。董事会提供推动 OER 建议的工具,并寻求确保整个奥尔德姆实现持续良好的增长。 1.3 新兴的奥尔德姆经济计划将由经济委员会负责,旨在制定该镇到 2030 年的战略增长背景。
摘要:寻求经济可持续的电催化剂来代替氧气进化反应(OER)中的关键材料(OER)是电化学转化技术的关键目标,在这种情况下,金属有机框架(MOF)作为替代的电活性材料提供了很大的希望。在这项研究中,通过在氮掺杂的石墨烯上生长量身定制的基于Ni-Fe的MOF,成功合成了一系列纳米结构的电催化剂,从而创建了名为MIL-NG-N的复合系统。它们的生长是使用分子调节剂调整的,揭示了该性质的非平凡趋势,这是调节剂数量的函数。最活跃的材料表现出了出色的OER性能,其特征在于1.47 V(vs.RHE)达到10 mA cm -2,低Tafel斜率(42 mV dec -1),稳定性超过0.1 M KOH。这种出色的性能归因于唯一的MOF架构和N掺杂石墨烯之间的协同作用,从而增强了活动位点的量和电子传输的数量。与MOF和N掺杂石墨烯的简单混合物或N掺杂石墨烯上的Fe和Ni原子的沉积相比,这些杂种材料显然表现出了明显的OER性能。
: 对于经济有效地驱动OER,研制出耐用的电催化剂至关重要。[5–9] 为了应对这一挑战,最近,基于非贵重过渡金属(TM:Fe、Co、Ni、Mn)的金属间化合物由于其低电阻率、可调的成分和独特的晶体结构而受到了特别的关注。[10–15] 目前对基于金属间化合物的OER电催化剂的研究集中在合金化TM和准金属(例如,B、Si、Ge、As)或贫金属(例如,Al、Ga、Sn、Bi)。[16–25] 在这些金属间化合物中,TM物质严格地原位转化为活性TM(氧)氢氧化物,而非金属在碱性OER过程中大部分从结构中浸出,导致活性纳米域的形成,从而增强催化活性。 [17,18] 此外,在大多数情况下,虽然块体金属间化合物的表面会经历重构,但其内部仍能很好地保留,从而形成具有高导电性的独特核壳结构。[21] 另外,金属间化合物也可以根据结构中非金属的尺寸和类型在施加的OER电位下完全转变,形成多孔的块体活性催化剂。[15] 尽管已经取得了令人瞩目的进展,但块体金属间化合物的转变速度比块体金属间化合物快得多。
在可持续能源生产的途径中的障碍基本上激发了研究人员制造高效且稳定的多功能电催化剂,以加快氧气还原反应(ORR)的缓慢动力学以及氧气和氢进化反应(OER和她)。为此,我们通过在氮磷酸化的超薄碳基质(RU@n - P - C)上通过PyloLysis通过Pyrolysis开发了ORR,OER和她的高性能电催化剂。Doped intrinsic heteroatoms (N and P) allowed for the co-existence of graphitic lattice carbons along with amorphous carbon, which aided in the uniform distribution of Ru NPs over the carbon matrix, thereby, facilitating the efficient electron transfer, forming synergistic effect, and suppressing agglomeration of Ru NPs.在800°C下制备的构造的RU@N - P - C杂种结构在她的电流密度为10 mA/cm 2的情况下显示为45 mV的低电势,而OER的含量为327 mV,其TAFEL坡度为115和66 mv/dec,分别在Alkaline介质中为115和66 mv/dec。此外,被构造的RU@n - p - C表现出与标准20%PT/C催化剂相似的ORR活动。此外,Ru@n - p - c异质结构在所有ORR,OER和她的过程中都表现出极好的稳定性,这进一步提出了其实际应用。因此,这项研究为创建与能量相关的电催化的尖端电催化剂铺平了道路。
完成官员评估报告 (OER)。准备一份特别 OER,包括被报告官员的表现和任何其他可能评估官员的事项。此 OER 不计入连续性。如果导致非司法处罚的行为发生在当前报告期间,则无需提交特别报告,前提是该过程已完成,即在当前期间的常规报告提交时无需进一步审查。非司法处罚的依据应在常规报告中报告,参考文献 (b) 和 (h)。如果适用,取消“A”学校申请/安置,参考文献 (c)。向 CG 安全中心发起报告 (CG-5588),参考文献 (e)。根据《惩罚记录法》 (a),将以下内容存档于单位惩罚记录中,为期四年:• CG-4910 原件 • 纪律处分 (法庭备忘录) 打印件 • 权利确认书 (CG-4100A) • NJP 接受书 (CG-5810 (系列)) • 初步调查官 (PIO) 报告及所有附件 • 上诉的最终行动 (如果有)
完成官员评估报告 (OER)。准备一份特别 OER,包括被报告官员的表现和任何其他可能评估官员的事项。此 OER 不计入连续性。如果导致非司法处罚的行为发生在当前报告期间,则无需提交特别报告,前提是该过程已完成,即在当前期间的常规报告提交时无需进一步审查。非司法处罚的依据应在常规报告中报告,参考文献 (b) 和 (h)。如果适用,取消“A”学校申请/安置,参考文献 (c)。向 CG 安全中心发起报告 (CG-5588),参考文献 (e)。根据《惩罚记录法》 (a),将以下内容存档于单位惩罚记录中,为期四年:• CG-4910 原件 • 纪律处分 (法庭备忘录) 打印件 • 权利确认书 (CG-4100A) • NJP 接受书 (CG-5810 (系列)) • 初步调查官 (PIO) 报告及所有附件 • 上诉的最终行动 (如果有)
大规模氢产生的进步及其通过电催化水分裂的应用在很大程度上取决于发展高度活跃的廉价且有效的电催化剂的进展,以氧气进化反应(OER),这继续带来重大挑战。在此,我们准备使用嵌入的铁(Fe)和锰(Mn)纳米颗粒的GO@Zif- 67@mnfe,上面是用含有Zeolitic Imidazy框架(ZIF-67)装饰的石墨烯(GO)上的纳米颗粒(GO)。预先准备的GO@ZIF-67@MNFE催化剂表现出显着的电催化活性,低电位的低电势仅为236 mV,目前的密度为10 mA CM - 2,小型TAFEL斜率为55.7 mV dec-1的小型TAFEL斜率为1.0 mV,并且在1.0 M KOH ElectroleTe中可耐用。此外,我们进行了一项系统研究,以使用密度功能理论(DFT)计算来研究ZIF-67,ZIF-67@MN,ZIF-67@FE和ZIF-67@FE和ZIF-67@MNFE的电催化OER活性。实验和DFT计算结果表明,将Fe和MN引入ZIF-67通过减少活化的能量屏障和加速动力学来提高OER性能。这项研究提出了一种有前途的策略和合理的设计方法,用于利用ZIF衍生物进行水分割的多金属催化剂。
