1 UK Center for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom, 2 University of Florida, Plant Pathology Department, Space Life Sciences Lab, Exploration Park, Merritt Island, FL, United States, 3 Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, Netherlands, 4 Life Support and Physical Sciences Instrumentation Section, European Space Agency, Nordwijk, Netherlands, 5太空政策研究所,乔治华盛顿大学,华盛顿特区,美国,6德国航空航天中心(DLR),航空医学研究所,航空医学研究所,放射生物学系,研究小组,研究小组,德国,德国,7个中心,生物生物学中心MOLéculaire,MOLéculaire,National de la Rechorche Sciention Institution Instuction Institution Institution Institution Institution Institution Institution Institution Instuction Instription and or e>卫生,微生物学和环境医学,格拉兹,奥地利,奥地利9中心(CSIC-INTA),西班牙马德里,西班牙10 CBMSO,西班牙10 CBMSO,MADIS OHF,11 MATIS OHF,MATIS OHF,微生物学集团,研究与创新部,研究与创新部,食品科学和营养学院,伊克兰大学,冰岛,ICIDEND,ICLEAND)法国斯特拉斯堡
钢制造伪造或废钢。主要钢是在开放式炉(OHF)或碱性氧气炉(BOF)的集成钢厂中生产的。BOF或OHF被喂入爆炸炉(BF)中的生铁(De Beer等,2003; IEA,2017)。bfs在原钢生产中发射了70%的排放。在基于废料的植物中,钢是用回收钢喂养的电弧炉(EAF)。EAFS减少废弃的钢(或通过方向还原炉还原的热金属)用电极生产粗钢。用电力作为主要能源(占排放的45%),电网的碳强度在降低废钢生产的CO 2强度中起着至关重要的作用(De Beer等,2003)。全球综合钢厂和基于废料的迷你厂工厂分别占全球生产的70%和30%(WSA,2018年)。
动态核极化 (DNP) 在自旋电子学和量子信息处理中被公认为具有重要意义。DNP 可产生高核自旋极化,这不仅可以通过产生 Overhauser 场 (OHF) 来延长电子自旋寿命,而且还为探索核自旋量子比特提供了灵感。在应变量子点结构 (QDS) 中,核自旋通过其四极矩耦合到应变场。研究表明,这种核四极相互作用 (NQI) 可用于实现可观的 DNP 和电子自旋极化。在这里,我们发现了一系列横向排列的 (In,Ga)As QDS 的磁光异常,这些 QDS 是由这些纳米结构中的 NQI 和 DNP 引起的。我们发现对称性降低的 QDS 中 NQI 的主轴明显偏离生长方向,导致 OHF 倾斜超过 37°。针对晶体取向探测了由此产生的 OHF 横向分量,并分析了其对 DNP 和整体自旋失相的影响。我们表明,激子的高对称电子约束势不能保证同一纳米物体内原子核的高对称 NQI,因此需要对电子约束势和核自旋池的对称性进行相关优化。我们的研究结果强调了斜 NQI 在电子自旋退相干和去极化中的作用,而这一作用迄今为止在很大程度上被忽视了。因此,这项工作揭示了设计规则,用于设计 QDS 的电子和自旋景观,从而提高 DNP 在自旋电子学和量子计算中的应用性能。