简介:ISRO于2019年7月22日从印度太空港口Sriharikota推出了Chandrayaan-2 Mission。轨道器高分辨率摄像头(OHRC)板上Chandrayaan-2 Orbiter-Craft,是一款非常高的空间分辨率摄像机,可在可见的Panchronic(PAN)频段中运行。OHRC测量在可见的电磁频谱范围内从月球表面反射的太阳光。该相机设计用于在非常低的太阳高度条件下进行成像。OHRC图像被广泛用于着陆点表征,以检测小规模的特征,尤其是在Lunar表面上的较小巨石。OHRC的地面采样距离(GSD)(在Nadir View中)距离100 km的高度为0.25m和3公里。OHRC具有通过航天器操作产生多视立体声图像的能力。这些立体对可用于生成迄今可用于月球表面的最高分辨率数字高程模型(DEM)。这项研究提供了月球表面几个特定区域的OHRC多视图(Stecreo)图像的DEM生成能力。OHRC摄像机的规格:下表1中提供了OHRC摄像机的规格。
摘要人类机器人合作(HRC)是人类和机器人的范式,在共同的工作空间中协同工作。先前的研究模型,例如由固定数量的代理组成的多构想系统。这样的模型在整个过程中的数量和类型保持恒定,称为封闭系统。conconly是一种人类机器人协作,在任务过程中,团队大小在任务中动态变化称为开放性HRC系统(OHRCS)。OHRC可以通过允许代理商加入或根据需要离开任务来实现人类机器人协作的现实表示。在本文中,我们认为许多真实世界的HRC场景更好地建模为OHRC。我们介绍了OHRC的愿景,目前的潜在应用,检查HRC中开放性的好处,并为将来的研究提供了一些途径。
印度的第三次月球任务Chandrayaan-3将在月球高纬度位置部署一个着陆器和一个流浪者,使我们能够对这种原始位置进行有史以来的首次原位科学调查,这将有可能提高我们对主要地壳形成和后续修改过程的理解。主要着陆点(PLS)位于69.367621°,32.348126°。作为偶然性,在几乎相同的纬度上选择了替代着陆点(ALS),但向西约450 km至PLS。在这项工作中,使用了有史以来最好的高分辨率Chandrayaan-2 OHRC Dems和Ortho-images进行了对ALS的地貌,组成和温度特征的详细研究,该数据是从Chandrayaan-1和On Incon each each each each each each eachine lunar侦察机获得的数据集。为了理解热物理行为,我们使用了一个完善的热物理模型。我们发现Chandrayaan-3 ALS的特征是平滑的地形,中央部分相对较高。als由埃拉托斯尼(Eratosthenian)年龄的莫雷特斯(Moretus-A火山口)主导,位于Tycho Crater的喷出毯上。ALS是一个科学有趣的地点,可以从Tycho和Moretus中取出弹射材料。然而,由于存在Eratosthenian年龄喷射材料,该地点是巨石富集,OHRC得出的危险图证实了ALS内的75%无危险区域,因此适合着陆和漫游者操作。带有APX和LIBS板上的Tycho弹出的痕迹将有助于理解ALS内的组成变化。基于位点的光谱和元素分析,Fe的重量百分比约为4.8(wt。%),毫克〜5 wt。%和Ca〜11 wt。%。在构图上,ALS类似于具有典型的高地土壤类型组成的PL。的空间和昼夜变异性约为40 K和〜175 K。与PL相比,ALS属于类似位置,但与PL相比,ALS显示出降低的白天温度和夜间温度的降低,这表明与PL相比具有独特的热物理特征。像PLS一样,ALS似乎也是科学调查的有趣场所,Chandrayaan-3有望为对月球科学的理解提供新的见解,即使它恰好降落在替代着陆点。