迈索尔,印度卡纳塔克邦,摘要:汽车行业正在见证照明技术的范式转移,发光二极管(LED)的进步(LED),有机照明发光二极管(OLEDS)和适应性头灯。本文提供了这些创新照明系统的全面概述,分析了汽车工程中的原理,收益,挑战和应用。LED提供了卓越的能源效率,寿命和设计灵活性,从而彻底改变了各种组件的汽车照明。OLED,其薄,轻巧且可定制的性质,为车辆中的室内照明和显示系统提供了新的可能性。自适应大灯动态调整为驾驶条件,提高道路的可见性和安全性。但是,诸如成本,监管要求和技术限制之类的挑战持续存在。本文讨论了正在进行的研究工作和未来的方向,旨在克服这些挑战并利用先进的汽车照明技术的全部潜力。总的来说,这项研究阐明了LED,OLED和自适应大灯技术对汽车行业的变革性影响,从而塑造了移动性对更安全,更高效和美观的车辆的未来。索引术语 - LED,OLED和激光照明
目录 1 I. 修订历史 3 II. 制造商印记 3 1. 本手册的一般信息 4 1.1 信号词 4 1.2. 警告符号 5 1.3. 安全说明的结构 5 1.4. 信息符号 6 2. 安全 6 2.1. EG/EU 指令 6 2.2. 危险 6 2.3. 人员 6 2.4. 合理可预见的误用 7 2.5. 按预期用途使用 7 2.6. 保修和责任 7 2.7. 一般安全说明 8 3. 功能描述 10 3.1. 一般信息 10 3.2. 铭牌和名称 11 3.3. 交付范围 11 3.4. 技术数据 12 4. 运输和储存 13 4.1. 包装 13 4.2. 运输 13 4.3.存储 13 5. 安装 14 5.1. 准备 14 5.2. 机械安装 14 5.3. 安装高度 15 5.4. 安装 FP 125 OLED 16 5.5. 启动 19 6. 操作和设置 20 6.1. 一般信息 20 6.2. 菜单和显示信息 23 6.3. 使用激活和编程键进行操作 26 6.3.1. 打开和关闭 FP 125 OLED 28 6.3.2. 获取有关 FP 125 OLED 的信息 30 6.3.3. 执行快速检查 32 6.3.4. 设置操作模式和墨盒尺寸 34 6.3.4.1.操作模式设置润滑循环持续时间 37 6.3.4.2.操作模式设置排空时间 44 6.3.4.3.操作模式脉冲控制 51 6.3.5. 激活填充菜单 52 6.4. 显示屏上的错误和信息消息 54 6.5. 空液位警告 55
3. 蓝色磷光材料发展趋势······························ 14 3.1 磷光材料技术介绍及细节 3.2 磷光材料研究趋势 3.3 蓝色磷光材料商业化可能性分析 3.4 与下一代蓝色发光材料的竞争力分析
• The brightest commercial OLED panel with up to 300 lumens and 75-85 lm/W • Warm white (3000K) and neutral white (4000K) , CRI of > 90 and R9 >50 • Meets performance expectations (output, efficacy, LT, robustness) for many applications • Light for all interior applications that desire high performance lighting • Wider market opportunities available if cost can be lowered and efficacy increased
摘要:随着弯曲程度的增加,柔性显示器已发展为可弯曲、可折叠和可卷曲的显示器。由于脆性电极(例如氧化铟锡(ITO))的存在,在剧烈的弯曲变形下容易破裂和分层,降低电极的机械应力已成为关键问题。因此,柔性显示器中脆性电极的机械应力主要从弯曲半径的角度进行分析。另一方面,为了制作可卷曲的显示器,需要各种机械部件(例如滚轮和弹簧)来卷起或伸展可卷曲显示装置的屏幕。由于这些机械部件,可卷曲显示器中的脆性电极受到由于回缩力而产生的过大拉伸应力以及滚轮产生的弯曲应力。在本研究中,考虑了装置的边界条件,对可卷曲 OLED 显示器的机械变形进行了建模。引入了一种基于经典梁理论的分析模型,以研究可卷曲显示器的机械行为。此外,还利用有限元分析(FEA)分析了装置中机械部件对脆性电极的影响,并提出了通过控制显示面板中粘合剂的刚度来提高可卷曲显示器机械可靠性的策略。
本文提出了一种通过 ADT 以光解作为加速因子来确定 PMOLED 屏幕寿命的方法。用于光解的光由发射 405 nm 的 LED 产生。该方法的特殊性在于它使用可见光谱中的光。该方法可以在不修改屏幕的情况下使用最少的硬件来构建测试台。发射 405 nm 光的 LED 可以通过具有控制达林顿晶体管的运算放大器的组件来控制。该组件放置在不透明的盒子下方,以避免暴露于其他光源。一切都通风,以便测试台的不同部分保持在室温。选择进行测试的屏幕是 UG-9664HDDAG01,405 nm LED 是 LZ1-10UA00-00U8。调整 LED 以产生 140 W/m 2 至 1090 W/m 2 之间的不同辐照度。观察到的退化表明,当屏幕像素处于活动状态时,其退化速度明显更快。测试期间关闭的设备也会受到影响,但其性能下降程度不太明显。每 24 小时使用功率计进行一次辐照度测量,功率计调整至屏幕发出的主波长。根据有关OLED的科学文献,已知发射蓝光的有机材料具有持续时间
高荧光(HF)是一种利用激子在两个发光体之间转移的相对较新的现象,需要对分子能级进行仔细的成对调整,并被认为是朝着开发新的高效OLED系统发展的关键步骤。迄今为止,据报道,几乎只有几个具有所需窄带发射但中等外部量子效率的HF黄色发射器(EQE <20%)。这是因为尚未提出一种系统的系统策略,该策略尚未提出,尚未提出作为有效激子转移的补充机制,尚未提出过Förster共振能量传递(FRET)和三重态(TTS)过渡。在此,我们提出了一种理性方法,该方法允许通过微妙的结构修改,这是由同一供体和受体亚基构建的一对化合物,但可以在这些歧义性碎片之间进行多种通信。TADF活性掺杂剂基于与甲壳唑部分相关的萘酰亚胺支架,通过引入额外的键不仅导致π-云的扩大,而且还导致刚性刚化,还会导致刚性和抑制供体的旋转。这种结构变化阻止了TADF,并允许引导带盖和激发状态能量同时追求FRET和TTS过程。使用呈现的发射器的新型OLED设备显示出极好的外部量子效率(高达27%)和最大狭窄的全宽度(40nm),这是能量水平很好的结果。提出的设计原理证明,仅需要进行较小的结构修饰才能获得HF OLED设备的商业染料。
九州大学有机光子学和电子学研究中心 (OPERA) Chin-Yiu Chan、Yi-Ting Lee、Youichi Tsuchiya、Masaki Tanaka、Hajime Nakanotani 和 Chihaya Adachi
有机发光二极管(OLEDS)的直接沉积基于硅的互补金属 - 氧化物 - 氧化物 - 氧化芯片(CMOS)芯片已使具有高分辨率和纤维效应器的自我发射微观播放。OLED在增强和虚拟现实(AR/VR)显示器以及生物医学应用中的新兴应用,例如,作为光遗传学中细胞光递送的大脑植入物,需要在传统显示器中发现的光强度高度的宽度量。进一步的要求通常包括显微镜占地面积,特定形状和超强的钝化,例如确保基于OLED的植入物的生物相容性和最小的侵入性。在这项工作中,最多1024个Ultrabright,显微镜OLED直接沉积在针状CMOS芯片上。在CMOS芯片的Foundry提供的铝接触板上进行透射电子显微镜和能量X射线光谱,以指导触点的系统优化。等离子体处理和银层的实施导致欧姆接触条件,因此促进了橙色和蓝色发射OLED堆栈的直接真空沉积,从而导致芯片上的微米大小的像素。每个针中的电子设备允许每个像素单独切换。OLED像素产生的平均光电密度为0.25 mW mm-2,对应于> 40 000 cd m-2,远高于大脑中日光AR应用和光遗传单单元激活的要求。
摘要:有机发光二极管(OLEDS)被广泛认为是显示和照明技术的前沿技术。现在,全球OLED市场几乎已经成熟,这是由于对智能手机上的出色显示的需求不断上升。 近年来,已经引入并证明了许多策略,以优化孔注入层以进一步提高OLED的效率。 在本文中,阐明了优化孔注入层的不同方法,包括使用合适的孔注入材料来最大程度地减少孔注入屏障并与发射层匹配,并探索新的准备方法以优化孔注入层的结构,等等。 同时,本文可以帮助人们了解当前的研究进展,以及与OLED孔注入层相关的挑战,从而提供了未来的研究方向,以增强OLED的特性。现在,全球OLED市场几乎已经成熟,这是由于对智能手机上的出色显示的需求不断上升。近年来,已经引入并证明了许多策略,以优化孔注入层以进一步提高OLED的效率。在本文中,阐明了优化孔注入层的不同方法,包括使用合适的孔注入材料来最大程度地减少孔注入屏障并与发射层匹配,并探索新的准备方法以优化孔注入层的结构,等等。同时,本文可以帮助人们了解当前的研究进展,以及与OLED孔注入层相关的挑战,从而提供了未来的研究方向,以增强OLED的特性。