2。基于经过验证的英特尔EVO设计的现实电池寿命,同时在平均每日使用情况下在现实环境中执行典型的工作流程。电池寿命是指在典型使用的环境下进行工作流程,包括多个基于云的环境,并且(如果可用的)本地应用程序和网页进行工作流程,则需要花费时间。典型的使用环境包括Google Chrome浏览器,Google G-Suite或Microsoft Office 365,YouTube和Zoom。测试是在连接到802.11ax无线连接的未插电笔记本电脑上进行的,并具有发货的硬件配置,包括Windows 11(基于Windows的设备)和Chrome OS(基于Chrome的设备)和250-NIT(LCD显示器)/200-NIT(OLED显示器)(OLED显示器(OLED显示器))屏幕屏幕亮度。平均每日使用方案基于英特尔创新计划项目雅典娜的一部分进行的广泛笔记本电脑用户研究。要了解更多信息,请访问https://www.intel.com/content/www/www/us/en/products/docs/devices-systems/laptopp/laptopp- innovation-prokation-program.html单个系统结果可能会有所不同;功率和性能因使用,配置和其他因素而异。截至2024年1月,测试结果,并且不能保证单个笔记本电脑的性能。在intel.com/evo上了解更多信息。
电子新概念(6 小时) - 塑料电子:化学反应;按需滴落技术;OLED 和屏幕 - 柔性电子:如何适应现有物体并添加新功能 - 可食用电子:带遥控器的医疗药丸;体内电子
2024(国际电子博览会)还展出了11英寸平板电脑和32英寸电视,这带来了更好的反应,具有更好的色彩,更高的亮度,较高的亮度,较低的功耗和AR/VR。这种表现已经被商业化,现有的自我发射OLED
超荧光 (HF) 是一种相对较新的现象,利用两种发光体之间的激子转移,需要仔细地成对调整分子能级,被认为是开发新型高效 OLED 系统的关键一步。迄今为止,报道的具有所需窄带发射但外部量子效率中等 (EQE <20%) 的 HF 黄光发射体寥寥无几。这是因为尚未提出一种系统性策略,将 Förster 共振能量转移 (FRET) 和三线态到单线态 (TTS) 跃迁作为有效激子转移的互补机制。在此,我们提出了一种合理的方法,通过细微的结构修改,可以获得一对由相同供体和受体亚基构建的化合物,但这些双极片段之间的通讯方式不同。 TADF 活性掺杂剂基于与咔唑部分的氮相连的萘酰亚胺支架,通过引入额外的键,不仅导致 π 云扩大,而且还使供体变硬并抑制其旋转。这种结构变化可防止 TADF,并引导带隙和激发态能量同时进行 FRET 和 TTS 过程。利用所提出的发射器的新型 OLED 设备表现出出色的外部量子效率(高达 27%)和较窄的半峰全宽(40nm),这是能级排列非常好的结果。所提出的设计原理证明,只需进行少量结构修改即可获得适用于 HF OLED 设备的商业染料。
以下出版物 Liu, X., Wei, X., Miao, Y., Tao, P., Wang, H., & Xu, B. (2021). Tribenzoamine-based smallmolecules with gathering-induced emission and mechanochromic luminescence properties for OLED application. Tetrahedron, 86, 132061 可在 https://doi.org/10.1016/j.tet.2021.132061 上找到。
电视、电脑和智能手机的显示器在画质、清晰度和能效方面不断改进。激光显示器有望成为下一代显示器。特别是在亮度和色彩再现性方面,激光显示器有可能克服传统发光设备(如 OLED 和液晶)的固有局限性。
显示单元:可以将小型或大型 OLED 2x16 / 4x20 字符显示器直接连接到设备的 X4 连接器。请访问我们网站上的 DPY-111x 产品页面以获取更多信息。定制:TEC-1092 的许多硬件和软件功能都可以根据要求进行定制。如有疑问,请联系 Meerstetter Engineering。
