显示单元:可以将小型或大型 OLED 2x16 / 4x20 字符显示器直接连接到设备的 X4 连接器。请访问我们网站上的 DPY-111x 产品页面以获取更多信息。定制:TEC-1092 的许多硬件和软件功能都可以根据要求进行定制。如有疑问,请联系 Meerstetter Engineering。
摘要 - 必须实时监控电池,以确保其符合其设计的寿命。此外,必须计算和控制电池供应的能源成本,以使太阳能发电厂企业家实际上获利。该项目旨在为电池条件开发基于IoT的监视和控制系统,尤其是电池供应的能源消耗成本。该系统使用ESP32微控制器,INA219传感器,单个通道5 VDC OptocOpoler继电器和OLED显示器。ESP32从INA219传感器中处理电流和电压,然后在OLED显示屏上显示。显示的参数包括消耗的能源成本,电流,电压,电源,消耗的能源和使用的电池容量。数据也将使用IoT发送到Blynk网站,从而可以实时监视这些参数。基于测试结果,计算能源成本的平均误差为0.046%,其他测量或计算的参数低于1%。此系统还可以使用Blynk平台将功率流驱散到负载。可以得出结论,该系统运行良好,从而实现了电池参数的基于IoT的监视和控制。
抽象实现具有窄带发射和高颜色纯度的高发光有机发光设备(OLEDS)在各种光电领域都很重要。激光显示由于其最终的视觉体验而在下一代展示技术中表现出了出色的优势,但这仍然是一个巨大的挑战。在这里,我们开发了一种新型的基于OLED的有机单晶。通过将有机激子状态与光学微腔内强烈耦合,我们从极性的OLED(OPLEDS)中获得了Polariton电致工(EL)发射,具有较高的亮度,窄带发射,高色纯度,高极性,高极性以及出色的光学泵送极性元素Laser。此外,我们通过理论分析评估了电泵浦极性激光的潜力,并提供了可能的解决方案。这项工作提供了一种强大的策略,具有材料 - 设备组合,为电动有机单晶的极性发光设备和可能的激光器铺平了道路。
电池铜箔事业部、铜箔事业部稳定增长、OLED产品组合扩大及客户多元化、BIO产品组合优化)电池铜箔量产产生费用,反映在2021财年收益中。• 2021财年第四季度:由于电池铜箔供应暂时减少导致销售额下降,通过调整铜箔供应
1. 引言近年来,OLED 技术的巨大进步 [1,2,3] 和有机光伏 (OPV) 的迅猛发展证明了有机电子器件的工业和商业潜力。有报道称,体异质结设计中的经典有机光伏器件的效率接近 20%,而钙钛矿的效率甚至超过了这个值。这些里程碑式的进步使得此类发展如今既适用于小规模也适用于大规模应用 [4,5]。尽管如此,尽管最近电子器件和传感器取得了令人瞩目的进步,但下一代 OLED、太阳能电池和印刷电路(基于有机场效应晶体管 (OFET))的制造在寻找新型更高性能半导体、基板和封装材料、电介质和加工条件 [6–11] 等方面仍面临挑战。有机材料在 RF 范围内(即兆赫甚至更高频率)在空气中的稳定运行将支持许多能够与硅基 CMOS 电路竞争的新技术的开发 [8,12–18]。当这些新型电子元件与生物传感元件相结合时,将为开发一次性诊断和药物输送技术开辟可能性[19–29]。
智能家居/城市是物联网的重要体现之一,2 涉及各种类型的电子设备,如智能照明系统、3、4 音频视频设备和安全系统。5 其中,语音激活智能照明可以翻译语音命令,实现对灯光的控制。目前,发光二极管 (LED) 和有机发光二极管 (OLED) 已成为智能家居/城市的流行照明系统,6 而具有可调色发射的有机荧光材料是 OLED、7 生物传感、生物成像、8、9 防伪等潜在应用的重要组成部分。 10 与无机荧光粉相比,有机材料具有精确的分子结构,且分子骨架易于修改,有利于获得具有奇妙光物理性质的各种荧光材料,例如稳定的发光自由基、11 颜色可调的发射,以及单线态裂变、12 室温磷光 13 等。14,15 因此,人们致力于开发新型有机荧光材料,以实现具有先进应用的高科技有机电子器件。此外,已经构建了许多用于多色发射以及白光发射的可调荧光发射有机分子,例如比率响应发光材料、16
利用等离子体增强化学气相沉积 (PECVD) 在低温下无损伤、无应力地沉积化学计量的氮化硅是微电子、微机电系统 (MEMS) 等各种应用领域中的一个重要课题。本研究研究了氮化硅 PECVD (LAPECVD) 过程中激光辅助对沉积的 Si 3 N 4 薄膜的物理和化学特性的影响。由于反应气体的分解作用增强,在 80 ◦ C 下用 193 nm 激光辅助的 LAPECVD 显示出比 PECVD 更高的沉积速率。此外,沉积的氮化硅薄膜的 N/Si 化学计量比和残余应力也得到了改善。当氮化硅直接沉积在有机发光二极管 (OLED) 上进行薄膜钝化时,LAPECVD 没有观察到电气损坏,这可能是因为激光辅助沉积在 OLED 表面覆盖了一层薄薄的氮化硅层,而传统的 PECVD 则因直接暴露于等离子体而导致离子轰击导致器件损坏。我们相信 LAPECVD 系统可用于各种下一代微电子行业,这些行业需要在低温 PECVD 期间以最小的损坏进行高质量的薄膜沉积。
Bernd Richter、Philipp Wartenberg、Stephan Brenner、Johannes Zeltner、Christian Schmidt、Judith Baumgarten、Andreas Fritscher、Martin Rolle、Uwe Vogel 德国德累斯顿 Fraunhofer IPMS 一种新型半透明硅基 OLED 微显示技术,为纤薄近眼光学器件提供了新的光学设计机会
有机半导体已用于各种电子设备,包括有机发光二极管 (OLED)、[1] 有机太阳能电池、[2] 有机光电探测器 [3] 和各种形式的有机晶体管 [4–7]。所有这些设备的根本要求是在有机半导体和电触点之间的界面上高效地注入和/或提取电荷。[8] 因此,对实现高效电荷注入/提取所需的活性材料和设备工程的广泛研究和开发对于实现 OLED 的商业化等至关重要。该领域的进展现已达到这样的程度,即与有效载流子和激子限制、能量转移、外耦合和寿命等其他方面相比,电荷注入和提取并不是限制 OLED 最新技术发展的最关键问题。 [9–12] 有机太阳能电池也是如此,最近其主要关注点和改进源泉与非富勒烯受体的开发更加紧密地联系在一起。[13] 另一方面,各类有机晶体管多年来一直被吹捧为新型大面积集成电路应用领域中基于无机半导体的晶体管的主要替代品,[14,15] 但尚未在消费电子产品中得到广泛采用。与无机晶体管相比,有机晶体管的几个缺点,例如电荷载流子迁移率通常较低、器件均匀性较差、可靠性降低[16],随着时间的推移,这些缺点已经得到显着改善,因此现在一些利用有机薄膜晶体管 (TFT) 的商用器件已经面世。[17] 然而,接触电阻 (RC) 仍然是进一步开发基于有机晶体管的电路的主要障碍。 [18–21] 对于低功耗、高频应用(如移动有源矩阵显示器)的有机 TFT 的开发尤其如此,因为高 RC 限制了通过器件小型化可以实现的最大单位电流增益截止(传输)频率。[22] 尽管在扩展有机 TFT 的宽度和性能方面取得了重大进展,但有机 TFT 中的高接触电阻仍然是一个主要问题
在材料科学中,开发具有聚集诱导发射的热活化延迟荧光 (TADF) 发射器对于构建高效电致发光器件至关重要。在此,基于高度扭曲的强吸电子受体 (A) 硫芴 (SF) 修饰的酮 (CO) 和芳胺供体 (D),通过简单的合成程序高产率设计和制备了两种具有迷人聚集诱导发射的不对称 TADF 发射器 SFCOCz 和 SFCODPAC。所得分子具有高达 73% 的光致发光量子产率和 0.03 eV 的小单重态-三重态分裂;令人惊讶的是,由这些发射器促进的高效非掺杂和掺杂 TADF 有机发光二极管 (OLED) 显示出 5,598 和 11,595 cd m − 2 的高亮度、16.8 和 35.6 cd/A 的电流效率 (CE)、9.1 和 29.8 lm/W 的功率效率 (PE) 以及 7.5% 和 15.9% 的外部量子效率 (EQE)。这项工作为探索高效的 TADF 发射器提供了一个具体的例子,这对同时促进具有高亮度和出色效率的 TADF OLED 的发展非常有利和令人鼓舞。
