脉冲激光沉积(PLD)是一种具有复杂化学计量的薄膜,在成功制造高温超级导管(HTS)以薄膜形式的高温制造后,它引起了很大的研究注意。[1]从那时起,PLD主要用于与晶格匹配底物上多元化合物氧化物外延生长有关的应用,但尚未在光伏(PV)社区中进行探索。尽管在2000年代初通过PLD制造了高度导电的TCO,并通过PLD制造,并在OLEDS [2,3]中成功实现,但关于PV设备中PLD生长的触点的应用仍然很少。文献报道包括用于CIGS [4]的掺杂的ZnO膜和有机的太阳能电池和金属氧化物传输层用于卤化物钙钛矿太阳能电池。[6]此外,已经提出了PLD用于硫化葡萄糖剂吸收剂[7,8],最近,对于卤化物钙钛矿吸收剂层。[9,10]
这项研究着重于[2.2] Paracyclane-1,9-二烯的合成和评估,以使用环环分解聚合(ROMP)产生可溶性聚(P-苯基乙烯)(PPV)衍生物均聚物。所得的均聚物显示出狭窄的多分散指数(PDI)为1.22,表明对聚合的精确控制。PPV衍生物在各种有机溶剂中表现出极好的溶解度。的光物理特性,包括光吸收和荧光发射光谱,以评估光电设备中的实用性。薄膜的光条间隙范围为2.21至2.25 eV,对于解决方案,溶液的2.07至2.19 eV,而由环状伏安法确定的电化学带隙为2.37 eV。这些杂物在各种溶剂和薄膜中表现出有希望的荧光活性,这表明在有机灯发光二极管(OLEDS)和相关的光电设备中的潜在应用。
市场与应用 ELASTOSIL ® 和 SEMICOSIL ® 有机硅产品广泛用于汽车和工业应用、消费电子、电力电子、微电子、照明、能源、航空航天和电信。典型应用包括: 电池:充电和放电循环期间的热量管理,这对于优化性能至关重要 电力电子:封装剂和间隙填充物可改善电感器、变压器和充电器中的热流,优化充电期间的性能并延长产品寿命 电子控制单元和传感器:提供强大的热界面并保护精密电气元件,使高发热量设备保持在所需的工作温度范围内 微电子/照明:处理器芯片和 TIM-1 级散热器之间使用的 TIM,例如 LED 和 OLED
研究兴趣:我的研究兴趣涵盖了纳米技术和材料科学的广泛前沿课题。其中包括有机发光二极管 (OLED) 的开发,它在现代显示和照明技术中发挥着至关重要的作用。我还专注于有机-无机纳米复合材料,特别是它们在创新纳米设备中的应用。我研究的一个关键领域是光伏太阳能电池的开发,目标是提高其效率和可持续性。此外,我对无机纳米粒子和纳米棒的合成以及金属纳米粒子的绿色合成有着浓厚的兴趣,它们为各个行业提供了有前途的环保应用。我还探索相变材料 (PCM) 在储能和先进材料应用方面的潜力。短期研究访问:
依靠双光子过程来实现高分辨率,因此需要在写入焦点处具有高激光强度。因此,DLW 需要材料具有高光学透明度。这排除了大多数有机半导体的 DLW,因为它们由于电荷传输 p 电子系统而固有地带有颜色。相反,电子束光刻 (EBL) 的高分辨率为光处理的微型设备提供了机会。当用电子照射时,有机薄膜会交联并发生局部溶解度的变化。9,10 Persson 等人用 EBL 构造聚(3-辛基噻吩),并用氯化铁 (III) 掺杂所得结构。11 Hikmet 等人图案化聚(对苯乙烯基)衍生物 (PPV) 用于多色有机发光二极管 (OLED)。9 在
由于电子从大分子链上的π分子轨道离域,了解有机大分子的电子结构和立体化学之间的密切联系,从而获得半导体或金属导电性,这有利于解释和理解它们的电学、电化学和光学性质以及不同的导电模式,也将更好地解释这些性质,特别是在通过化学聚合或电沉积开发超薄导电或半导体层时;这些结构用于开发电流或阻抗生物传感器(生物电子学)中DNA、RNA或蛋白质的固定表面,以及OJI(“有机”结型晶体管)、Oled(有机发光二极管)、用于纳米电化学、半导体电化学和光电化学的纳米电极,以及它们在数字显示、防腐、量子点(纳米点)和有机光伏电池(OPVC)中的众多应用。
有机半导体已用于各种电子设备,包括有机发光二极管 (OLED)、[1] 有机太阳能电池、[2] 有机光电探测器 [3] 和各种形式的有机晶体管 [4–7]。所有这些设备的根本要求是在有机半导体和电触点之间的界面上高效地注入和/或提取电荷。[8] 因此,对实现高效电荷注入/提取所需的活性材料和设备工程的广泛研究和开发对于实现 OLED 的商业化等至关重要。该领域的进展现已达到这样的程度,即与有效载流子和激子限制、能量转移、外耦合和寿命等其他方面相比,电荷注入和提取并不是限制 OLED 最新技术发展的最关键问题。 [9–12] 有机太阳能电池也是如此,最近其主要关注点和改进源泉与非富勒烯受体的开发更加紧密地联系在一起。[13] 另一方面,各类有机晶体管多年来一直被吹捧为新型大面积集成电路应用领域中基于无机半导体的晶体管的主要替代品,[14,15] 但尚未在消费电子产品中得到广泛采用。与无机晶体管相比,有机晶体管的几个缺点,例如电荷载流子迁移率通常较低、器件均匀性较差、可靠性降低[16],随着时间的推移,这些缺点已经得到显着改善,因此现在一些利用有机薄膜晶体管 (TFT) 的商用器件已经面世。[17] 然而,接触电阻 (RC) 仍然是进一步开发基于有机晶体管的电路的主要障碍。 [18–21] 对于低功耗、高频应用(如移动有源矩阵显示器)的有机 TFT 的开发尤其如此,因为高 RC 限制了通过器件小型化可以实现的最大单位电流增益截止(传输)频率。[22] 尽管在扩展有机 TFT 的宽度和性能方面取得了重大进展,但有机 TFT 中的高接触电阻仍然是一个主要问题
•在财务方面,我们全面提供了记录结果。2022年收入为6.17亿美元,营业收入为2.67亿美元,净收入为2.1亿美元,或每股4.40美元。•在客户方面,我们与我们的合作伙伴(三十年,三星展示)宣布了针对红色和绿色材料的新长期协议,并于2023年初与Seiko Epson宣布了AR/VR显示器的评估协议。•在全球制造方面,与我们的铸造厂合作伙伴23年,PPG,我们在爱尔兰香农新制造地点的初始阶段为我们生产了我们的节能,高性能的Universalpholed®材料。随着预计OLED的扩散,我们正在提高OLED发射极生产能力,以满足客户的未来需求。
