1。Jaeah Lee,Changwoon Choi,Young Min Kim和Jaesik Park,Livestroke:CVPR中的视频中抽象3D动作(2025)。2。gwangtak bae *,Changwoon Choi *,Hyeongjun Heo,Sang Min Kim和Young Min Kim,I2-Slam:ECCV中强大的影像现实主义密度大满贯的反倒成像过程(2024)。3。Changwoon Choi,Jaeah Lee,Jaesik Park和Young Min Kim,3Doodle:Siggraph(ACM TOG)(2024)中的3D笔触的物体的紧凑型抽象。4。sang赢得了Im*,Dongsu Zhang*,Jeong Hyun Han,Ryeong Myeong Kim,Changwoon Choi,Young Min Kim **和Ki Tae Nam **,研究了使用生成的细胞自动机研究金的性形态,在自然材料中(2024)。5。Changwoon Choi *,Juhyeon Kim *和Young Min Kim,IBL-NERF:Pacific Graphics(计算机图形论坛)(2023)中的神经辐射场的基于图像的照明公式。6。Sang Min Kim,Changwoon Choi,Hyeongjun Heo和Young Min Kim,在Pacific Graphics(计算机图形论坛)(2023年)中,适用于健壮的小说合成的色彩转换模块(2023年)。7。Junho Kim,Changwoon Choi,Hojun Jang和Young Min Kim,LDL:ICCV中的全景定位的线距离功能(2023)。8。Changwoon Choi,Sang Min Kim和Young Min Kim,CVPR(2023)的平衡球形网格,用于以中心的视图合成。9。Junho Kim,Hojun Jang,Changwoon Choi和Young Min Kim,CPO:将强大的Panorama更改为ECCV(2022)的Point Cloud Netization。10。11。12。( *同样贡献。)语言和技能Dongsu Zhang,Changwoon Choi,Inbum Park和Young Min Kim,ICLR的概率隐式现场完成(2022年,Spotlight)。 Junho Kim,Changwoon Choi,Hojun Jang和Young Min Kim,Piccolo:ICCV(2021)的Point Cloud-point以云为中心的OM-中性定位。 Dongsu Zhang,Changwoon Choi,Jeonghwan Kim和Young Min Kim在ICLR(2021)中学习具有生成性蜂窝自动机的3D形状。Dongsu Zhang,Changwoon Choi,Inbum Park和Young Min Kim,ICLR的概率隐式现场完成(2022年,Spotlight)。Junho Kim,Changwoon Choi,Hojun Jang和Young Min Kim,Piccolo:ICCV(2021)的Point Cloud-point以云为中心的OM-中性定位。Dongsu Zhang,Changwoon Choi,Jeonghwan Kim和Young Min Kim在ICLR(2021)中学习具有生成性蜂窝自动机的3D形状。Dongsu Zhang,Changwoon Choi,Jeonghwan Kim和Young Min Kim在ICLR(2021)中学习具有生成性蜂窝自动机的3D形状。
在一个经济体面对限制的代理商的模型中,我们为在FX前进市场的一个价格偏离法律的偏离方面提供了一种新颖的解释。具体来说,我们记录了当地交易的远期合同的汇率和与全球金融危机期间国家管辖范围以外的相同成熟度的合同之间的巨大差异,而货币的大幅度不同。该模型预测(1)基础随着时间的推移的限制的阴影成本而增加,并且随着国家特定的FX位置限制而增加; (2)随着中间部门的相对性能下降以下,每个约束的阴影成本非线性增加; (3)位置限制的较高阴影成本可以预测降低本地货币计价资产的未来多余回报,因为购买本地资产放宽了对中介机构施加的FX位置限制的限制。我们测试模型预测,并在局限性限制的国家中找到一致的证据。
在吉祥的 Paush Purnima 日子,大壶节拉开帷幕,恒河、亚穆纳河和神秘的萨拉斯瓦蒂河的神圣河岸人头攒动,超过 1.65 亿人在圣河中沐浴。来自全国各地的朝圣者心中怀着信仰,手捧祭品,齐聚一堂,进行第一次圣浴。空气中回荡着“Har Har Gange”和“Jai Shri Ram”的圣歌,营造出神圣的热情氛围。朝圣者的虔诚显而易见,他们从午夜开始冒着严寒抵达桑加姆。他们裹着羊毛衣,头上顶着行李,在他们坚定不移的信仰面前,行李的重量似乎微不足道。“当我在这里畅游时,感觉就像灵魂上的重担被卸下了,”来自拉贾斯坦邦的 65 岁朝圣者 Savitri Devi 从水中浮出水面,露出了平静的微笑,说道。当身着传统服饰的人们挤满河坛时,桑加姆河的河岸变成了五彩缤纷的景象。孩子们在浅水中玩耍,他们的笑声与咒语交织在一起,而老人则坐着祈祷,嘴唇低吟着神圣的赞美诗。年轻人的热情尤其引人注目,许多人用手机捕捉这些瞬间并立即分享。“我们很自豪能来到这里,与世界一起庆祝我们的文化,”来自阿拉哈巴德的 22 岁 Aniket Mishra 站在水边,手里拿着自拍杆说道。精神能量与自然恩赐相得益彰,前一天晚上还下了一场小雨
探索和利用地下空隙来实现长期月球人的人类习惯:运输,挑战和补救技术利用了充气的结构和mycoarchitection。Christopher Maurer 1,James Head 2,Lynn J. Rothschild 3。1个红屋。克利夫兰,哦。chris@redhousestudio.net,布朗大学,普罗维登斯,RI。james_head@brown.edu。3 NASA AMES。 Moffett Field,CA。 lynn.J.Rothschild@nasa.gov。 简介和背景:月球和火星的长期人类外观和居住概念通常呼吁建造地面栖息地(例如小屋,外壳,建筑物等。 ),使用多种原位资源(ISRU)进行建筑材料和启用构造技术。 所有这些技术都需要非常重要的建筑材料,能源和水的可用性。 On the basis of funding from the NASA Ad- vanced Innovative Concepts (NIAC) program, we have been investigating synthetic biology, Mycoarchitecture [1], and flexible, foldable and inflatable forms [2], to ad- dress the significant upmass penalty of taking building materials to Lunar and Martian destinations and develop- ing Myco-Architecture-enabled capabilities to build habi- tats in situ at destination. 在这项贡献中,我们探索了候选人的原位栖息地(熔岩管和堤防尖端空隙),以及如何利用我们的NIAC资助的技术发展来准备此类自然地下空隙(图。3 NASA AMES。Moffett Field,CA。 lynn.J.Rothschild@nasa.gov。 简介和背景:月球和火星的长期人类外观和居住概念通常呼吁建造地面栖息地(例如小屋,外壳,建筑物等。Moffett Field,CA。lynn.J.Rothschild@nasa.gov。简介和背景:月球和火星的长期人类外观和居住概念通常呼吁建造地面栖息地(例如小屋,外壳,建筑物等。),使用多种原位资源(ISRU)进行建筑材料和启用构造技术。所有这些技术都需要非常重要的建筑材料,能源和水的可用性。On the basis of funding from the NASA Ad- vanced Innovative Concepts (NIAC) program, we have been investigating synthetic biology, Mycoarchitecture [1], and flexible, foldable and inflatable forms [2], to ad- dress the significant upmass penalty of taking building materials to Lunar and Martian destinations and develop- ing Myco-Architecture-enabled capabilities to build habi- tats in situ at destination.在这项贡献中,我们探索了候选人的原位栖息地(熔岩管和堤防尖端空隙),以及如何利用我们的NIAC资助的技术发展来准备此类自然地下空隙(图。1-3)用于长期人类居住。1,底部)。月球和火星上的自然地下空隙:地球和行星研究揭示了长期居住和保护避免月球和火星表面条件的极端和危险的另一种概念。地球火山学家长期以来都知道,富富火山喷发会产生熔岩流,其面孔可以冷却和屋顶,从而形成了深度的熔岩管,并继续从喷发地点流出熔岩[3]。最终,这些充满熔岩的地下熔岩管从流动的前面排出,留下一个埋藏的,通常是弯曲的,熔岩管(图1顶部),通常可以通过屋顶上的孔进入,称为“天窗”(图
简介:冰卫月可能会促进碳质软管和彗星材料的组合[1]。冰冷月亮上的碳质有机物(COM)的起源可能是原始的,它是从原始磁盘的有机库存中获得的[2],或者可能由Fischer-Tropsch-type合成的原位形成[3]。A pre-accretional origin of the organic matter found in carbonaceous chondrites (CC's) from the evolution of molecular cloud ices, followed by aqueous alteration on the parent body could explain the soluble organic matter found in CC's today [4] Organic species have been directly observed on icy satellites such as aliphatic signatures on Ceres [5], and carbonaceous organic matter (COM) has also been successfully以低密度成分的形式建模,以适应大冰卫星和泰坦的质量和惯性矩[6]。在父材料积聚后,在全球早期海洋中,硅酸盐和有机物之间的分化和相互作用导致这些体内各个层的分配。有机物可以在冰冷的月球形成期间通过变质[6]转化,其中有机前体经历了进行性石墨化。被困在岩石岩心中的COM的热解会释放挥发物和碳氢化合物,然后如冥王星所建议的那样将其捕获在气体水合物层中[7]。目前可以形成富含COM的外部岩心的热解释放的有机物[1],供应Enceladus的羽毛,并可能在全球海洋中产生有机富层[2]。创建了一个地球化学模型,以预测有机物种的形成和浓度。这项研究的目的是了解在软骨(硅酸盐富含硅酸盐)和彗星(碳富含碳)材料的水热改变过程中产生的有机物质,如果将这些有机物提取到地下海洋顶部的稀薄的不混溶层。
向NASA的建议:Interlune认可了月球表面数据的珍贵性,并愿意与行星科学界共享我们的数据。我们首选的机制是通过类似于地球科学部门计划元素商业SmallSat数据获取的玫瑰计划元素。该计划是为了识别,评估和获取支持NASA地球科学研究和应用目标的商业来源的数据。这些数据提供了一种具有成本效益的方式,可以补充NASA或其他政府机构获得的地球观察套件。
1 Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, I-50019 Sesto F.no (Florence), Italy 2 Inf-Astro fi sic observatory of Arcetri, Largo E. Fermi 5, I-50125 Florence, Italy 3 School of Physics and Astronomy, University of St Andrews, North Haugh, ST Andrews, St Andrews. Ky16 9SS, UK 4 Inf-Observatory of Astro Phone and Spazio of the Space of Bologna, Via Piero Gobetti 93 /3, 40129 Bologna, Italy 5 GEPI, Observiire de Paris, PSL University, CNRS, Meudon, France 6 Cavendish Laboratory, University of Cambridge, 19 J. Thomson Ave., Cambridge CB3 0he, UK 7, UK 7卡夫利宇宙学研究所,剑桥大学,马德利路,剑桥CB3 0HA,英国8物理与天文学系,伦敦大学学院,伦敦高尔街,伦敦WC1E 6BT,英国9欧洲南部天obervoration,Karl-Schwarzsschild-Strassse 2, D-85748 Garching Bei Muenchen,德国1 Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, I-50019 Sesto F.no (Florence), Italy 2 Inf-Astro fi sic observatory of Arcetri, Largo E. Fermi 5, I-50125 Florence, Italy 3 School of Physics and Astronomy, University of St Andrews, North Haugh, ST Andrews, St Andrews. Ky16 9SS, UK 4 Inf-Observatory of Astro Phone and Spazio of the Space of Bologna, Via Piero Gobetti 93 /3, 40129 Bologna, Italy 5 GEPI, Observiire de Paris, PSL University, CNRS, Meudon, France 6 Cavendish Laboratory, University of Cambridge, 19 J. Thomson Ave., Cambridge CB3 0he, UK 7, UK 7卡夫利宇宙学研究所,剑桥大学,马德利路,剑桥CB3 0HA,英国8物理与天文学系,伦敦大学学院,伦敦高尔街,伦敦WC1E 6BT,英国9欧洲南部天obervoration,Karl-Schwarzsschild-Strassse 2, D-85748 Garching Bei Muenchen,德国