月球资源开采一直是人们关注的焦点,而作为采矿先决条件的月球卫星却在很大程度上被忽视了。本文主要讨论国内外月球卫星的使用条件和监管情况。大体观点是,目前所有或几乎所有的国内和国际法规都不适用于月球卫星,或者只在最低限度上适用。因此,月球卫星目前的运行几乎没有指导、监管或限制。本文提出了几种解决监管真空的方法。第二部分提供了有关月球计划和月球卫星的背景信息,并指出监管不足可能会加剧月球利益相关者之间的冲突。第三部分展示了国际监管的不足,并提出了修改和解决方案。第四部分转向国内监管,并进行了分析,证明了
1. 简介 有效载荷可以通过从地面发射的太空火箭送入轨道,但这并不是唯一可行的解决方案。例如,可以使用机载发射系统到达低地球轨道。[1,2] 中研究了空中发射的好处。这种解决方案可以成为大型航天发射综合体的一种有趣替代方案,特别是因为它可能有利于发射小型有效载荷。此外,对于那些没有自己的太空运输系统或正在寻找一种在发射场和系统机动性方面具有极大灵活性的解决方案的国家来说,拥有一套空中发射入轨系统至关重要。纳米和微型卫星(重量从 1 到 50 公斤)市场的出现使空气辅助火箭发射平台成为此类有效载荷的竞争性解决方案。这种类型的卫星不仅在航天工业巨头国家的财力范围内,而且在个别企业甚至公司的购买力范围内。市场分析显示,2020年约有200颗纳米和微型卫星被发射到不同的轨道。此外,甚至一些大学和研发中心也有兴趣将自己的小卫星发射到太空,以充当研究平台。充当辅助平台的飞机的载重量足以运载能够发射高达50公斤太空有效载荷的火箭。迄今为止,纳米和微型卫星已作为附加的补充有效载荷(所谓的“搭载”)随主要有效载荷发射。值得注意的是,这种系统在军事领域也有应用,例如作为反卫星武器或响应式空中发射。因此,时间和目标轨道取决于订购运输主要有效载荷的一方的要求。作战响应空间应用涉及快速设计和建造军用卫星以供其立即发射,这是另一个值得考虑的市场领域。目前,经典卫星的研发阶段持续 4 至 10 年(微型卫星为 1 - 4 年)。执行空中辅助发射操作需要 1-3 年,这意味着该时间与设计和建造卫星所需的时间相当。2007 年,美国成立了作战响应空间办公室 (ORSO),该机构的任务是建立一个小型卫星“战术”系统,能够提供广泛理解的“支持”武装部队。其另一项任务是
轨道有效载荷转移车辆(OPTV)代表了横跨低地球轨道(LEO),中等地球轨道(MEO)和地静止轨道(GEO)的尖端解决方案。具有高达750 kg的有效载荷能力,使用对称二甲基氢氮嗪(UDMH)和氮四氧化物(N2O4)采用高效的高级推进系统。其创新的对接机制促进了精确的卫星定位,并实现了各种各样的轨道操作,包括有效载荷部署,轨道修改,加油,维护和减少碎屑。通过满足各种轨道要求,OPTV有助于优化卫星星座,在太空探索中促进了具有成本效益和可持续性的实践,同时推进了下一代轨道车辆和技术的发展。
财务前景 在我们迈向 2027 年的过程中,我们以明确的财务目标为指导,这些目标反映了我们对持续可持续和盈利增长的承诺。我们的目标是实现年收入增长 16%,息税前利润率达到 20% 左右。此外,我们还将资本回报率定为 30%,通过投资研发和生产能力来分配资本,为我们所有的利益相关者创造价值。在这一过程中,保持强劲的资产负债表至关重要,确保我们拥有财务韧性,在管理风险的同时寻求机遇。
本文研究了卫星的在轨寿命。研究涵盖了不同的轨道状态、通用任务分析工具 (GMAT) 模拟和数据,以确认低地球轨道因素对卫星衰减的影响。太阳活动是卫星寿命的一个关键决定因素,影响低地球轨道 (LEO) 卫星所受的大气阻力。研究证实了阻力因素(横截面积和轨道高度)与卫星寿命之间的相关性,强调需要优化这些因素以延长在轨运行以及随后快速脱轨。本研究旨在为更细致地了解大气阻力因素和卫星动力学做出贡献。简介卫星已成为现代世界的重要组成部分,提供从通信和导航到天气预报和地球观测等广泛的关键服务。然而,卫星并不是太空中的永久固定装置。特别是在低地球轨道,卫星可能因大气阻力、潮汐扰动和太阳效应而逐渐失去轨道高度,并最终重新进入大气层并烧毁。因此,卫星在轨寿命是其设计、运行和任务规划的关键因素。
图1:o rbit -Surgical Simulation基准测试任务。(1) Reach : dVRK Patient Side Manipulator (PSM) to reach a desired position (red sphere), (2) Reach with Obstacles : reach to a desired position (red sphere) with randomly placed obstacle in the scene (blue sphere object; object shape and size are customizable), (3) Suture Needle Lift : lift a suture needle to a desired position, (4) Peg Block Lift : lift a peg block to a desired position, (5) Pick and Place : pick and place a ring on a peg tower, (6) Dual-arm Reach : dual-arm reach to specific desired positions shown with red sphere, (7) Dual-arm Reach with Obstacles : dual-arm reach to specific desired positions (red sphere) with randomly placed obstacles in the scene, (8) Pick and Transfer : pick and transfer a peg block, (9) Needle Handover : handover and regrasp a suture needle, (10) Threaded Needle Pass Ring : handover a threaded suture needle through a ring pole, (11) Gauze Cloth Pick : retrieve gauze and lift it to a desired location, (12) Shunt Insertion : insert a shunt (yellow tube) into larger blood vessel phantom (clear tube), (13) Multi-arm dVRK : needle handover task with camera input from the dVRK Endoscopic Camera Manipulator (ECM),(14)星际范围:星臂达到所需位置。最佳观看的颜色。请参阅orbit-surgical.github.io
摘要 - 协作同时本地化和映射(CSLAM)对于使多个机器人在复杂的环境中运行至关重要。大多数CSLAM技术都依赖于原始传感器测量或低级功能,例如关键帧描述符,由于对环境的深入了解,这可能导致错误的循环封闭。此外,机器人之间这些测量值和低水平特征的交换需要大量数据传输,这限制了系统的可扩展性。为了克服这些局限性,我们提出了多个S-Graphs,这是一种分散的CSLAM系统,它利用嵌入了四层层次结构和可优化的情境图中的高级语义相关信息,用于合作图的生成和本地化,同时最小化机器人之间交换的信息。为了支持这一点,我们提出了一个新颖的房间描述符,该描述符及其连接的墙壁用于执行机器人间循环封闭,以应对多机枪绑架的问题初始化的挑战。在模拟和真实环境中进行了多个实验,验证了所提出方法的准确性和鲁棒性的提高,同时减少了与其他最先进方法相比,机器人之间交换的数据量。docker图像中可用的软件:https:// github.com/snt-arg/multi_s_graphs_docker
摘要 — 背景:为了降低选择性手术麻醉期间反流的风险,传统上通过隔夜禁食来减少残留胃容量 (RGV)。长时间的术前禁食会带来一些不良后果,除肥胖和/或糖尿病患者外,大多数外科手术都已放弃禁食。目的:本研究旨在评估传统或缩短禁食后病态肥胖糖尿病患者的 RGV。方法:本研究经马托格罗索联邦大学人类研究伦理委员会批准,编号为 179.017/2012。这是一项前瞻性、随机、交叉设计研究,研究对象为八名病态肥胖 II 型糖尿病患者。 RGV 是在传统的隔夜禁食至少 8 小时后,或短暂禁食 6 小时(固体食物)和 3 小时(含水和 25 克(12.5%)麦芽糊精的饮料)后通过内窥镜测量的。数据以平均值和范围表示,差异用配对 t 检验比较,p<0.05。结果:研究人群平均年龄为 41.5 岁(28-53 岁),体重为 135 公斤(113-196),体重指数为 48.2 公斤/米 2(40-62.4),患 II 型糖尿病 4.5 年(1-10 年)。短暂禁食后的 RGV 为 21.5 毫升(5-40),而传统禁食后为 26.3 毫升(7-65)。这种差异并不显著(p=0.82)。结论:病态肥胖糖尿病患者在传统或短期禁食并饮用碳水化合物饮料后胃排空情况相似。标题:胃排空。碳水化合物。病态肥胖。2 型糖尿病。