有机朗肯循环是将低品位热源转化为电能的可用解决方案之一。然而,由于膨胀机的特殊设计,工厂的开发往往非常昂贵。通常,设计 ORC 工厂的输入参数是热源和冷源的温度和功率。它们决定了工作流体、压力和温度的选择。然后根据所需的操作参数设计膨胀机。使用市场上容易买到且性能众所周知的标准涡轮机可以降低开发和制造成本。然而,必须对 ORC 进行调整,以使膨胀机在最佳条件下工作。对于太阳能聚光热源,可以通过调整聚光系数和集热器总面积来调整温度和功率。在本文中,考虑使用给定的燃气轮机作为 ORC 的膨胀机。了解涡轮机在空气中的性能后,基于相似规则寻找不同流体的 ORC 的最佳运行参数(压力、温度、流量和转速)。调整的目的是保持工作流体与空气相同的密度变化、相同的入口速度三角形和相同的入口马赫数。然后使用 CFD 模拟计算涡轮机的性能图,并显示最大等熵效率接近空气,约为 78%。
摘要。热能存储(TES)已成为现代电力工程的主要研究课题之一。TES 设备和系统的设计取决于其应用。不同的热能存储材料(例如固体、液体或相变材料)可应用于 TES 设备。热能存储材料的选择主要取决于 TES 设备的热功率和工作温度范围。这些设备和系统应用于不同的能源转换系统,包括太阳能发电厂或热电联产 (CHP) 站。在其他行业(例如冶金业)中也会考虑使用 TES 设备。TES 设备在有机朗肯循环 (ORC) 系统中的应用前景尤其光明。这些系统通常利用浮动热源,例如太阳能、废热等。因此,TES 设备可用作 ORC 系统的蒸发器,以稳定这些波动。本文讨论了应用于 ORC 的 TES 设备中可能使用的热能存储材料。此外,还报告了与评估参数相关的建模结果,这些评估参数可用于确定使用不同低沸点工作流体的 ORC 系统的 TES 设备的尺寸。工作流体的热性质取自 CoolProp。还提供了不同 TES 材料的热容量函数,并采用 MATLAB 进行计算。结果表明,基于模拟,TES 与工作流体的自然特性梯度 (ζ (T b )) 趋于减小。本文提出的结果提供了一个新的观点,可供科学家和工程师在设计和实施专用于 ORC 动力系统的 TES 蒸发器时使用。
在ORC和BPR之间作为“ ORC-BPR”相互作用(图1a,第一个面板,虚线框)。使用总内反射荧光(TIRF)显微镜,我们监测了溶液与表面束缚的原点DNA中的ORC C的共定位(23)。在每个ORC-DNA共定位事件中,我们测量了有效的ORC C•+51 FRET效率(E FRET)以检查ORC诱导的DNA弯曲。当兽人到达DNA时,我们一直观察到高兽人C•+51 e fret状态,表明兽人与ACS和BPR结合,并且绑定的DNA弯曲(图。1C-D)。大多数ORC C•+51 E FRET值以0.62为中心(图1d)。尽管它们代表兽人共定位时间的0.5%,但我们还观察到了较低的E fret值的短期(<0.28,图。1C-D,SI附录,图 s1b)。 这些低E FRET值不是由光漂白引起的,因为我们在实验后通过受体激发检查了DNA耦合的荧光团,并将分析限制为将荧光保持到实验结束的DNA分子。 此外,对照实验表明,这些低E fret值不是由沿着DNA滑动而引起的,以远离ACS(SI附录,图。 s2)。 我们排除了在DNA共定位期间任何时候都没有显示高E FRET信号的小部分(约2%)的兽人分子,因为这些可能代表了非特异性的ORC结合。 单个高斯模型在低E fret值下的差(图) 1b)。1C-D,SI附录,图s1b)。这些低E FRET值不是由光漂白引起的,因为我们在实验后通过受体激发检查了DNA耦合的荧光团,并将分析限制为将荧光保持到实验结束的DNA分子。此外,对照实验表明,这些低E fret值不是由沿着DNA滑动而引起的,以远离ACS(SI附录,图。s2)。我们排除了在DNA共定位期间任何时候都没有显示高E FRET信号的小部分(约2%)的兽人分子,因为这些可能代表了非特异性的ORC结合。单个高斯模型在低E fret值下的差(图1b)。1d,插图中的红色曲线表明在弯曲或无形构象状态下存在不同的种群。我们得出的结论是,低E fret值反映了一个无分的状态,其中兽人在ACS处保持绑定,但兽人相互作用丢失(图添加Cdc6会提高DNA上的ORC稳定性,从而导致
摘要。有很高的信心,全球变暖会增强全球水周期的所有组成部分。这项工作调查了未来几十年中全球变暖对全球河流流量的可能影响。我们进行了18次全球水文模拟,以评估预计如何在不久的将来(2015 - 2050年)(1950- 2014年)的河流变化。模拟是由高分辨率模型对讲项目(HighResmip)CMIP6全球气候模型(GCM)强迫的,该模型假设了该过程的高发射方案。评估包括估计世界上所有河流的信号噪声(S / N)比和出现时间(脚趾)。与水周期强度一致,水文模拟项目从2000年开始出现了明显的正全球河流放电趋势,其自然变异性水平是自然变异的水平,到2017年,到2033年变得“不寻常”。模拟同意,气候变化信号主要由起源于中非和南亚的河流的强劲增加以及进入北极海洋的河流的强劲增长,这部分由预计的pato-nian河流的流量减少了。这种变化的潜在影响可能包括在中非和南亚河流中更频繁的流量,这是由于预计的一般循环的宏伟壮观而造成了前所未有的峰,这是额外的淡水释放中北极海洋的清新,并在Patagonia中有限地在patagogagogogaii的patagogogiata中销售了有限的wa terabilitie。这强调了在全球变暖的挑战中对与水相关的问题进行优先考虑与水相关的关注方面的关键需求。
不幸的是,合作也可能被用于邪恶目的,正如标题文章“发现和报告有组织的零售犯罪”的作者所描述的那样,专业有组织盗窃团伙 (OTG)“[合作] 偷窃牟利”以资助其犯罪活动。文章概述了有组织零售犯罪 (ORC)“是有组织的计划的一部分,有多个参与者欺骗零售商或窃取产品以在其他地方转售。” 这种有组织的计划需要合作,正如文章中所讨论的,ORC 受益于 OTG 的合作,他们甚至可能拥有复杂的业务层次结构。但合作是双向的。正如文章所述,“金融机构在打击 ORC 和解散 OTG 团伙方面发挥着关键作用”,但“公私合作伙伴关系 [如 ACAMS 和 HSI] 以及零售商、执法机构和金融机构之间的信息共享渠道”也发挥着关键作用。通过共同努力,我们可以在阻止 ORC 方面取得进展。
摘要:为了减少对化石燃料的依赖,观察到对源自可再生能源(例如太阳能热,海洋热和地热)的浮动和间歇热源的利用的兴趣增加,并观察到了废热。这些热源可用于在相对较低和中等温度(例如通过有机兰氨酸周期(ORC))发电。在某些案例研究中,已经开发了各种方法,以利用合适的工作流体来处理所需的工作条件下的兽人。本文旨在审查具有热量存储(TES)(TES)的某些设计和集成系统,以及侧重于利用中等和低温热源的两相扩展系统,其中提出了一些亚临界兽人。此外,报道并比较了带有TES的几种可能的控制系统(常规和高级)和两相扩展系统。在本文末尾,讨论了设计和控制系统的未来发展,以描述使用低级热源的高级ORC。本研究旨在使研究人员和工程师深入了解此过程中涉及的挑战,从而使ORC技术的工业化更广泛,尤其是与TES和两相扩展系统相结合时。
生产清洁能源和减少能源浪费对于实现联合国可持续发展目标(如可持续发展目标 7 和 13)至关重要。这项研究分析了多兆瓦级绿色氢气生产中废热回收的技术经济潜力。一个 10 MW 质子交换膜电解过程被建模为一个热回收系统和一个有机朗肯循环 (ORC) 来驱动氢气的机械压缩。技术结果表明,当实施与 ORC 相结合的废热回收时,电解器的第一定律效率从 71.4% 提高到 98%。ORC 可以产生足够的功率来驱动氢气的压缩,从电解器出口压力 30 bar 到 200 bar。进行了经济分析以计算系统的平准化氢气成本 (LCOH) 并评估实施与 ORC 相结合的废热回收的可行性。结果表明,电价决定了 LCOH。当电价较低时(例如专用海上风电),实施热回收的 LCOH 较高。额外的资本
摘要 地热发电的普遍优势是其可靠性和基载能力。然而,未来的能源系统需要可靠的能源,这些能源还能对需求的变化做出快速反应。可逆有机朗肯循环 (ORC) 也可用作高温热泵 (HTHP),使地热系统能够更灵活地运行。与区域供热系统和/或储热系统 (例如 HT-UTES) 相结合,可逆 ORC 可以响应电网的需求,从地热盐水中发电或在 HTHP 模式下消耗电力。通过实施存储系统,HTHP 运行期间产生的高温热量可用于在以后增加地热电力输出。这项工作概述了可逆 ORC 在地热系统中的应用和灵活性潜力,并介绍了此类系统的潜在系统布局。
储能系统是可再生能源系统管理能源供应和需求的重要组成部分之一。本文研究了一种新型混凝土热能存储系统与太阳能驱动的有机朗肯循环的集成。复合抛物面集热器 (CPC) 用于吸收太阳能。然后将太阳能转移到热能存储 (TES) 和有机朗肯循环 (ORC) 进行储热和发电。为了评估所提出系统的性能,对其进行了数值建模,并进行了参数研究,以找到 TES 的最佳参数,从而最大化 ORC 的工作时间。结果表明,TES 管道长度的增加会导致 TES 充电时间和热容量增加到 82 小时和 660 kW,太阳能电池板表面为 1000 m 2。此外,通过使用长度为 2000 m、直径为 0.4 m 的优化 TES 混凝土部分,ORC 的工作时间每天延长 3.10 小时。此外,太阳能驱动的ORC系统中使用TES导致系统发电量减少1.3%,发热量增加0.49%。