摘要:本文介绍了地热植物的名义条件的设计和操作的同时优化,在该植物的名义条件下,地热流体分为两个流以供应有机的兰金循环(ORC)和区域加热网络(DHN)。还研究了DHN的拓扑结构。使用GAMS软件制定并解决了混合整数非线性编程(MINLP)优化问题,以确定ORC的大小和DHN拓扑。在这项研究中,仅将R-245FA用作ORC工作流体,在ORC中考虑了可选的内部热交换器(IHE),并且DHN中的消费者可以确定或可选。通过最大化年度净利润并最大程度地减少工厂中的充分损失来进行多目标优化。使用目标函数的加权总和用于解决问题。通过改变重量因子,获得了帕累托阵线,并与理想但不可行的解决方案的距离允许选择最佳折衷。根据重量因子观察到四种不同的DHN拓扑。使用合适的标准做出决定,所选的配置对应于最小的利润价值最小的DHN。敏感分析表明,如果地热温度较低,无论重量因素如何,都可以获得独特的DHN拓扑。
CHP工厂包括完全自动化的燃料存储和处理系统,这些系统将植物的燃烧系统带入生物质。生物量完全焚化,释放的能量用于加热传热培养基(热油),该介质(热油)向兽人单位提供高温能。然后可以将兽人产生的电力送入当地网格中,并可以将热油/热水用于加热。整个过程都是完全自动化的,可以由运营商和PolyTechnik服务专家远程控制。
摘要:当涉及到中小型范围的海水脱盐时,由太阳能提供动力的有机兰氨酸周期(ORC)是当前可用的最能量 - 能量的技术。已经开发了各种太阳能技术来捕获和吸收太阳能。其中,抛物线槽收集器(PTC)已成为一个低成本的太阳能热收集器,其运营寿命很长。本研究分别研究了使用Dowtherm A和甲苯作为太阳周期和兽人周期的工作流体的PTC驱动ORC的热力学性能和经济参数。热经济多目标优化和决策技术用于评估系统的性能。分析了四个关键参数,以至于它们对充电效率和总小时成本的影响。使用TOPSIS决策,可以识别出Pareto Frontier的最佳解决方案,其兽人充电效率为30.39%,每小时总成本为39.38 US $/h。系统参数包括137.7 m 3/h的淡水质量,总输出净功率为577.9 kJ/kg,区域加热供应量为1074 kJ/kg。成本分析表明,太阳能收集器约占每小时总成本的68%,为26.77 us $/h,其次是涡轮机,热电发生器和反渗透(RO)单元。
o:t>~RA~ror:f OF "l"'CIAL :'ORC'"''" D"'TA~IDT1'"' .1 - 1c2 , 第 5 <-pr.·r,Ja FORCT F GltOUP (AIRBORI'f ) , h•t f'P'CH.L ~<'ORC•S , H1 ,.:if o-t.''Nf:'l;' C" -liE F-P 1 'Cii'.L !-'{,RGJ:"f' Ct~·:p ~-T A ~HAU , R 7 PU?LIC o-::- vr '~'N!," , 9- 12 ..:.~CH 1"6(,.(P'R - FNIAL 'YJ?.Rrn;c- OF ;.. '"P"'CI:i..' rc1Crf 11 a 11 ;r'"';..~:;;-;"1' rc·~ ;.:--r...)
这项研究评估了四种情况下聚合物电解质膜燃料电池(PEMFC)的废热的利用:热量和功率组合(CHP),合并的冷却,加热和功率(CCHP),合并的冷却和功率(CCP),以及与有机兰克(Orc Cyce)一起产生有机的电力(ORC)。该方法涉及热力学建模和参数分析,以评估能源效率,节省燃料和环境影响。CCHP方案表明,总体系统效率最高,为87%,可节省46%的燃料和降低55%的CO₂排放量。ORC方案利用废物来发电,可实现41%的电效率,总体效率为68%,节省了26%的燃料和49%的CO₂排放量。这项研究表明,整合CCHP系统在能源,环境和经济指标之间提供了卓越的性能。这些发现通过优化废物恢复,减少排放并根据消费者需求和运营条件提供量身定制的解决方案来促进可持续能源系统。
Turboden具有发电厂的经验,可为地区供暖网络传递电力和热量,我看到了越来越多的项目,尤其是在欧洲。一种迅速扩展的新趋势是温度较高和容量大的兽人植物。在兽人和增强的地热系统之间存在天然协同作用 - 新的钻井技术可以通过挖掘热量并从地面上利用热能,从而完全注入流体,从而在较低温度下恢复流体。功率工厂技术与新钻探技术之间的这种协同作用是扩大地热应用以及其他可再生能源的唯一方法。
更广泛地应用可再生能源的瓶颈之一是开发高效的能源存储系统,以弥补可再生能源的间歇性。抽水蓄能 (PTES) 是一项非常新的技术,它可以成为抽水蓄能或压缩空气储能的一种有前途的独立于场地的替代方案,而不会受到相应的地质和环境限制。因此,本文对由高温热泵 (HTHP) 组成的 PTES 系统进行了完整的热力学分析,该系统通过中间高温热能存储系统 (HT-TES) 驱动有机朗肯循环 (ORC)。后者结合了潜热和显热热能存储子系统,以最大限度地发挥制冷剂过冷的优势。在验证了所提出的模型后,已经进行了几项参数研究,以评估在广泛的源和散热器温度下使用不同制冷剂和配置的系统性能。结果表明,对于在 HTHP 和 ORC 中采用相同制冷剂的系统,以及在 133 o C 下的潜热储热系统,R-1233zd(E) 和 R-1234ze(Z) 表现出最佳性能。在所有研究的 133 ◦ C 潜热储热系统的案例中,在 HTHP 中采用 R-1233zd(E) 并在 ORC 中采用丁烯时,系统性能最佳(同时考虑到对环境的影响)。理论上,在 HTHP 源温度和 ORC 接收器温度分别为 100 ◦ C 和 25 ◦ C 下,此类系统可达到 1.34 的功率比。© 2020 由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要 卡诺电池被认为是一种有前途的适用于中型和大型应用的电-热-电存储技术。最近,有人提出在卡诺电池中使用两用热机。在这样的系统中,单个装置在充电期间充当热泵(HP,压缩机操作)或在放电期间充当有机朗肯循环(ORC,膨胀机操作)。与使用两台独立机器的传统卡诺电池相比,这种配置降低了该技术的投资成本。已经在小型(1 kW el)卡诺电池中试工厂使用单个涡旋压缩机/膨胀机进行了实验活动。在充电和放电模式下都测试了广泛的操作条件。讨论了系统电荷对两种操作模式下可获得工作点的影响。研究发现,在 HP 模式下运行系统所需的系统电荷低于 ORC 模式。在这些低电荷下,增加 HP 模式下的电荷对系统在较高源温和散热器温度下的性能有积极影响。在 ORC 模式的较高电荷下,发现增加系统电荷对研究的运行范围内的系统启动有积极影响。除了定性讨论外,还对系统和涡旋机进行了定量研究。