(ORCID:0000-0002-4453-6515) 土耳其语摘要 – 在我国,由于石油、煤炭和天然气等化石燃料的储量有限以及环境和社会限制,对可再生能源的倾向有所增加。能源连续性对于现代生活的可持续性和生产的连续性非常重要,这取决于工业和技术的发展。存储技术在最大限度地减少可再生能源的使用过程中的能源生产中断以及这些系统的广泛使用方面发挥着非常重要的作用。在需要时,必须供应足够数量的能源需求。利用能源存储系统可以快速可靠地响应一天中可能发生的能源需求变化。储能技术;这是一项具有巨大潜力的技术,因为它可以改善电力系统,促进可再生能源生产,并提供石油衍生燃料的替代品。在这项研究中;讨论了化学、电气、电化学、机械和热能存储系统,并提供了有关其结构和工作原理的信息。关键词 – 储能方法、可再生能源、储能技术、储能。引用:Emeksiz,C.,Kara,B.(2022)。储能技术的回顾与比较分析。国际多学科研究与创新技术杂志,6(2): 134-142。
波兹南理工大学 ORCID:1. 0000-0003-2725-2614;2. 0000-0002-3622-8889 doi:10.15199/48.2022.11.60 风力涡轮机功率特性对发电量影响的分析 摘要。以下文章介绍了风力涡轮机功率特性对总发电量的影响。科学文献的回顾表明需要进一步分析这个问题。为此,对八台 3kW 风力涡轮机的性能参数进行了分类,对其运行特性进行了建模,并包括在波兰的示例位置进行的基本环境参数的样本测量。利用收集的数据,不仅制作了风速直方图,还计算了特定月份的平均风速。然后,进行了模拟研究,以确定给定位置的最佳风力涡轮机。年度最大发电量是选择过程中的主要标准。 (分析 wpływu charakterystyk mocy turbin wiatrowych na ilość wytwarzanej energii)Streszczenie。 Wartykule przedstawiono wpływ charakterystyk mocy turbin wiatrowych na całkowitą ilość wytwarzanej mocy。对文学的分析W tym celu skatalogowano parametry pracy ośmiu turbin wiatrowych o mocy 3kW każda, zamodelowano ich charakterystyki eksploatacyjne, uwzględniając przykładowe pomiary istotnych parametrów środowiskowych, które wykonano w przykładowej lokalizacji na terenie Polski。 Dzięki zebranym danym wykonano nie tylko 直方图预测、调整和预测。 Następnie zrealizowano badania symulacyjne,które przeprowadzono w celu określenia najbardziej optymalnej turbiny wiatrowej dla danej lokalizacji。 Głównym kryterium wytworzonej mocy 的处理过程。关键词:风力发电机;功率特性建模;风速直方图;风力涡轮机模拟。 Słowa kluczowe: turbina wiatrowa; modelowani charakterystyk mocy;直方图 prędkości wiatru; symulacja turbiny wiatrowej。简介 风力涡轮机,通常称为风力发电机,是一种能够将风的动能转化为发电机涡轮叶片的机械运动,从而产生电能的设备。尽管风能似乎无处不在,但并非地球的每个角落都能提供有效生产电能的最佳条件。其总量在很大程度上取决于风力涡轮机的各种技术和性能参数以及风力发电机所在位置的环境条件。只有正确分析和相互关联这些因素,才能确保快速收回投资成本。这对于在分布式储能系统中使用风力涡轮机尤为重要,因为分布式储能系统的实施成本很高。通过将分析的涡轮机与位置进行适当匹配,投资成本的回收时间会缩短,从而提高投资的盈利能力。对于使用储能和灵活集成的可再生能源的投资,选择最佳的风力涡轮机可以为整体经济平衡带来最大的节约。尽可能充分利用风力涡轮机产生的电力可以限制所需的储能容量,从而降低投资和服务成本。这就是为什么作者将这个问题作为设计大型分布式系统的重要元素,以利用具有储能可能性的可再生能源发电。许多科学家试图精确确定目前在世界范围内应用的解决方案 [1-3] 的性能参数,以了解它们在风能领域的成本效益。例如 [4, 21] 中的一些问题解决了严格的机械性质问题,例如选择最佳机械和最佳调整其参数。在各种出版物 [5- 10] 中可以找到不同的解决方案或更新风力涡轮机控制系统的建议。如今,科学研究 [11, 12] 更加关注风源分散和多样化问题,以保持风力涡轮机的稳定性和安全性。12]更加关注风源分散和多样化问题,以维护电网的稳定和安全。12]更加关注风源分散和多样化问题,以维护电网的稳定和安全。
Edgar, Graham K ORCID: 0000-0003-4302-7169, Catherwood, Dianne F, Baker, Steven ORCID: 0000-0002-3029-8931, Sallis, Geoffrey, Bertels, Michael, Edgar, Helen E, Nikolla, Dritan, Buckle, Susanna, Goodwin, Charlotte 和 Whelan, Allana (2018) 态势感知定量分析 (QASA):使用信号检测理论对态势感知进行建模和测量。人体工程学,61 (6)。第 762-777 页。doi:10.1080/00140139.2017.1420238
信托委员会(如果适用) 2008 年至今:罗马尼亚马古雷莱国家材料物理研究所科学委员会成员 2010-2012 年:罗马尼亚国家科学研究委员会成员(副主席职位)- 罗马尼亚国家科学研究与创新局咨询机构 2010 年至今:罗马尼亚研究组织雇主协会执行委员会成员 2009、2012、2014 年:客座编辑;《薄膜》,爱思唯尔,荷兰 2010 年:审稿人;美国能源部基础能源科学办公室 2011-2015 年:审稿人,土耳其伊斯坦布尔萨班哲大学工程与自然科学学院罗马尼亚研究、发展与创新咨询机构任命的监督员 2015 年:被任命为德国波恩 DLR ERA-NET RUS- PLUS 项目科学委员会的罗马尼亚代表 2015 年:审稿人:欧洲人才计划,法国 CEA 2015 年:审稿人;高等教育资助、研究、发展与创新执行单位 (UEFISCDI)
1 摩尔多瓦技术大学微电子与生物医学工程系纳米技术与纳米传感器中心,168 Stefan cel Mare Av.,MD-2004,摩尔多瓦共和国基希讷乌 2 基尔大学材料科学研究所工程学院功能纳米材料,Kaiserstr。2,D-24143,基尔,德国 * 通讯作者:Oleg Lupan,oleg.lupan@mib.utm.md,Vasile Postica,vasile.postica@mib.utm.md 收到:04. 03. 2020 接受:05. 11. 2020 摘要。由于纳米传感器在气体传感领域的商业化尚处于起步阶段,因此人们做出了许多努力来开发有效的方法来提高其性能。特别关注的是使用不同策略提高基于单个微米或纳米结构的气体纳米传感器的灵敏度和选择性。在这项工作中,重点介绍和总结了摩尔多瓦技术大学纳米技术和纳米传感器中心与德国基尔大学合作的研究小组在高性能气体纳米传感器领域取得的最新成果。使用聚焦离子束/扫描电子显微镜 (FIB/SEM) 仪器将基于氧化锌的准一维 (1-D) 和三维 (3-D) 单个混合结构集成到纳米装置中。结果表明,单个 ZnO 结构的混合可显著提高气体响应,并改变对挥发性有机化合物和氨的选择性。具体来说,通过用 ZnAl2O4 纳米粒子进行表面功能化,氢气响应增加了约 2 倍,而分别用 Fe2O3 纳米粒子或巴克敏斯特富勒烯 (C60) 和碳纳米管 (CNT) 进行表面功能化,对乙醇蒸气和氨的选择性发生了变化。所获得的结果为通过使用具有增强的协同催化行为和势垒操纵的混合纳米材料系统合理设计气体纳米传感器提供了新途径。关键词:混合材料、纳米传感器、气体传感器、ZnO、室温。介绍纳米技术通过整合自下而上的方法而迅速发展,为基于纳米材料的高性能设备制造带来了真正的革命
1. 《国际纳米电子和材料杂志》(IJNeaM)编委(2017-2019) 2. USM-CREST 合作 GaN on GaN 项目主要成员(2015-2020) 3. 《ECS 杂志》审稿人(2018)。 4. 《印度物理学杂志》审稿人(2018)。 5. 《自然》科学报告审稿人(2018)。 6. 《应用表面科学》审稿人(2017) 7. 《合金与化合物杂志》审稿人(2017) 8. 《半导体加工材料科学》审稿人(2017)。 9. 阿卜杜拉国王科技大学(KAUST)半导体与材料光谱组客座研究员(2017)。 10. 论文审稿人,《应用表面科学》,(2016) 11. 加州大学圣巴巴拉分校(UCSB)材料系访问研究员,(2016)。 12. 论文审稿人,《表面与涂层技术》(2015)。 13. 论文审稿人,《半导体加工材料科学》,(2015)。 14. 论文审稿人,《固体电子学》,(2015)。 15. 论文审稿人,《超晶格与微结构》,(2014)。 16. 论文审稿人,《半导体加工材料科学》,(2014)。 17. 论文审稿人,《热物理与传热杂志》,(2014)。 18. 论文审稿人,《应用表面科学》,(2013)。 19. 论文审稿人,《泰巴科学大学期刊》,(2013)。 20. 论文审阅人,胶体和表面 A,(2013)。 21. 论文审阅人,先进材料研究,(2013)。 22. 物理学当前研究国际研究生课程特邀演讲人(2013) 23. 纳米材料制造和先进表征方法研讨会特邀演讲人(2012) 24. 纳米材料制造和先进表征方法研讨会特邀演讲人(2012) 25. 短期资助(USM 级别)审阅人 26. 1 篇博士论文和 3 篇硕士论文的内部审查人 27. 3 篇硕士论文的外部审查人