摘要:由于细菌中抗生素耐药性的增加,对新型抗菌化合物的需求正在迅速增长。因此,迫切需要采用替代方法。抗菌肽(AMP)是有希望的,因为它们是先天免疫系统的自然存在,并且对各种微生物表现出显着的广谱活性和高选择性。海洋无脊椎动物是天然放大器的主要资源。因此,来自cnidarian Moon果冻的aurelia aurita和ctenophore梳子果冻mnemiopsis leidyi的cDNA表达(EST)库是在大肠杆菌中构建的。两个文库的无细胞分级细胞提取物(<3 kDa)连续筛选肽,以防止使用晶体紫罗兰色分析的肽形成机会性病原体。十个单独的克隆的3 kDa比例显示出对克雷伯氏菌的生物纤维预防活性和表皮葡萄球菌的有希望的生物预防活性。对各自的活性限制插入物进行测序,允许识别编码肽(10-22 aa)的小型ORF,随后将其化学合成以验证其抑制潜力。尽管这些肽可能是从EST插入物的随机翻译中是人工产物的,但针对K. oxytoca,Pseudomonas铜绿假单胞菌,表皮链球菌和S. aureus的生物纤维预防效应是针对浓度依赖性依赖于peStration beefterative依赖于pefterative的peptection的peptection的peptertive的peptertive的peptection。The impact of BiP_Aa_2, BiP_Aa_5, and BiP_Aa_6 on the dynamic biofilm formation of K. oxytoca was further validated in microfluidic flow cells, demonstrating a significant reduction in biofilm thickness and volume by BiP_Aa_2 and BiP_Aa_5.总体而言,海洋无脊椎动物衍生的放大器的结构特征,其物理化学特性及其有希望的抗体膜效应突出了它们是发现新抗菌剂的有吸引力的候选者。
摘要基于T细胞的免疫疗法彻底改变了癌症治疗,但只有少数患者对这些方法做出反应,这受到了对肿瘤特异性抗原知识有限的有限限制。在这里,我们提出了21种癌症类型的T细胞靶标的全面图,显示了86%的肿瘤可起作用的肿瘤特异性靶标。为了定义可操作的T细胞靶标的曲目,我们进行了全面的泛伴奏分析,该分析整合了来自7,473个RNA-Seq数据集,1,564个免疫肽组和208个癌症单细胞数据集的数据,将这些数据与覆盖51个组织的17,384个普通样品进行比较,将这些数据与208个癌症单细胞数据集进行了比较。我们的分析发现了88种可行的表面蛋白靶标和15,079个肿瘤特异性HLA呈现的抗原,源自21种肿瘤类型的11种不同的分子事件,为基于T-细胞的免疫疗法发育提供了全面的资源。我们重点介绍了128个有希望的新肿瘤靶标,并在五个抗原类别中验证20个目标。在未覆盖的抗原中,我们突出显示了339个以前未表征的新抗原,这是一种新的PMEL剪接肽,我们期望它是临床靶标的优质抗原,新型的自抗原,是从前未知的ORF肽衍生而来的肽,这些肽是以前未知的,不知名的蛋白质,以及新型的肿瘤蛋白质,以及新型的肿瘤特异性微生物靶标。这些发现显着扩大了T细胞疗法的治疗景观。为了催化治疗性开发,我们使我们的泛伴奏目标地图集和随附的工具包可供科学界使用,并希望这些资源为多种癌症的免疫疗法铺平道路。
猪繁殖与呼吸综合征 (PRRS) 是最重要的猪病之一,造成全球巨大的经济损失。病原体 PRRS 病毒 (PRRSV) 是一种有包膜的单链正义 RNA 病毒,与马动脉炎病毒 (EAV)、小鼠乳酸脱氢酶升高病毒 (LDV) 和猿猴出血热病毒 (SHFV) 一起被归类为动脉炎病毒科、动脉炎病毒属、Variarterivirinae 亚科。其基因组长度约为 15 kb,包含至少 11 个开放阅读框 (ORF),具有 5' 帽和 3' 多聚腺苷酸尾 (1-3)。约占基因组三分之二的ORF1a和ORF1b编码非结构蛋白(nsp1~12),具有蛋白酶、复制酶和调控宿主细胞基因表达等功能,负责病毒RNA的合成( 4 )。基因组3’末端的ORF2~7编码结构蛋白,包括糖蛋白2(GP2)、GP3、GP4、GP5、包膜蛋白(E)、基质蛋白(M)、核衣壳蛋白(N),由一系列亚基因组RNA表达( 5 )。由于PRRSV RNA依赖性RNA聚合酶(RdRp)缺乏校对能力,病毒基因组极易发生突变和重组,导致世界范围内出现新的PRRSV分离株( 6 )。目前,PRRSV 可分为两个种:PRRSV-1(欧洲基因型,Betaarterivirus suid 1)和 PRRSV-2(北美基因型,Betaarterivirus suid 2)。两个种均表现出很高的遗传多样性,核苷酸序列同一性约为 60%,每个种可进一步分为多个分支、亚株或谱系。在中国,优势毒株为 PRRSV-2,其高致病性变异株的爆发引起养猪业的担忧(7)。PRRSV 感染可导致母猪严重繁殖障碍,并使各年龄段的猪患上呼吸道疾病,并常导致继发性细菌感染(如副猪嗜血杆菌和猪链球菌),临床表现更严重,死亡率更高(8)。
基本所有者程序。分子生物学研究领域。<生物学的女主角教条。分子生物学中最常用的测量单元。c ristalloghich to x -rays和分子建模。x体晶体学。van der waals基于射线的模型。溶剂表面和浅表静电电位。氢桥线的结构几何形状。c核酸的结构射流。核苷和核苷酸。 磷酸化的脑结合和主要结构。 DNA二级结构。 DNA B和DNA A. RNA的二级和三级结构的结构参数。 基因组对DNA的 r恢复。 Meselson和Stahl实验。 冈崎的碎片。 大肠杆菌中的复制:首先,DNA聚合酶III,DNA聚合酶I,DNA Ligasi。 真核染色体DNA的复制:DNA Polimerasi alfa,DNA Polimerasi Delta,ribonucleasi H,Endonucleasi fen1。 人性线粒体DNA的复制。 端粒的作用。 的移动RNA的理解和成熟。 操纵子。 促进mRNA的结构。 RNA均值聚合酶和相对启动子。 cappuccio组。核苷和核苷酸。磷酸化的脑结合和主要结构。DNA二级结构。DNA B和DNA A. RNA的二级和三级结构的结构参数。 基因组对DNA的 r恢复。 Meselson和Stahl实验。 冈崎的碎片。 大肠杆菌中的复制:首先,DNA聚合酶III,DNA聚合酶I,DNA Ligasi。 真核染色体DNA的复制:DNA Polimerasi alfa,DNA Polimerasi Delta,ribonucleasi H,Endonucleasi fen1。 人性线粒体DNA的复制。 端粒的作用。 的移动RNA的理解和成熟。 操纵子。 促进mRNA的结构。 RNA均值聚合酶和相对启动子。 cappuccio组。DNA B和DNA A. RNA的二级和三级结构的结构参数。基因组对DNA的 r恢复。 Meselson和Stahl实验。 冈崎的碎片。 大肠杆菌中的复制:首先,DNA聚合酶III,DNA聚合酶I,DNA Ligasi。 真核染色体DNA的复制:DNA Polimerasi alfa,DNA Polimerasi Delta,ribonucleasi H,Endonucleasi fen1。 人性线粒体DNA的复制。 端粒的作用。 的移动RNA的理解和成熟。 操纵子。 促进mRNA的结构。 RNA均值聚合酶和相对启动子。 cappuccio组。r恢复。Meselson和Stahl实验。冈崎的碎片。大肠杆菌中的复制:首先,DNA聚合酶III,DNA聚合酶I,DNA Ligasi。真核染色体DNA的复制:DNA Polimerasi alfa,DNA Polimerasi Delta,ribonucleasi H,Endonucleasi fen1。人性线粒体DNA的复制。端粒的作用。的移动RNA的理解和成熟。操纵子。促进mRNA的结构。RNA均值聚合酶和相对启动子。cappuccio组。转录和多掺杂终止。内含物和剪接。RNA编辑。 Matui真核mRNA结构。 遗传密码。 RNA中基因组的 r。 pury-极性RNA复制机制(黄病毒,picornavirus,逆转录病毒),阴性极性RNA病毒,双丝细丝RNA病毒。 肝病病毒的特殊性。 的理解蛋白质。 运输RNA的结构和功能。 tRNA氨基acancezion。 <核糖体的分裂结构和功能特征。 将转化为过程和真核生物的开始。 <分配扩展翻译的阶段。 翻译的终止。 发射。 阅读阶段的滑动。 基因组序列的Nterpotation。 原核生物和真核编码基因的典型结构。 鉴定开放阅读方案(ORF),基因表达控制的内含子和元素。 基因表达的 r抑制。 调整了Procarials中转录开始的开始:组成型控制和调节控制。 真核生物中转录开始的开始。 家政和特定于织物的基因。 <结合DNA的蛋白质的分裂结构基序:螺旋螺旋螺旋,锌指,亮氨铰链。RNA编辑。Matui真核mRNA结构。遗传密码。RNA中基因组的 r。 pury-极性RNA复制机制(黄病毒,picornavirus,逆转录病毒),阴性极性RNA病毒,双丝细丝RNA病毒。 肝病病毒的特殊性。 的理解蛋白质。 运输RNA的结构和功能。 tRNA氨基acancezion。 <核糖体的分裂结构和功能特征。 将转化为过程和真核生物的开始。 <分配扩展翻译的阶段。 翻译的终止。 发射。 阅读阶段的滑动。 基因组序列的Nterpotation。 原核生物和真核编码基因的典型结构。 鉴定开放阅读方案(ORF),基因表达控制的内含子和元素。 基因表达的 r抑制。 调整了Procarials中转录开始的开始:组成型控制和调节控制。 真核生物中转录开始的开始。 家政和特定于织物的基因。 <结合DNA的蛋白质的分裂结构基序:螺旋螺旋螺旋,锌指,亮氨铰链。r。pury-极性RNA复制机制(黄病毒,picornavirus,逆转录病毒),阴性极性RNA病毒,双丝细丝RNA病毒。肝病病毒的特殊性。的理解蛋白质。运输RNA的结构和功能。tRNA氨基acancezion。<核糖体的分裂结构和功能特征。将转化为过程和真核生物的开始。<分配扩展翻译的阶段。翻译的终止。发射。阅读阶段的滑动。基因组序列的Nterpotation。原核生物和真核编码基因的典型结构。鉴定开放阅读方案(ORF),基因表达控制的内含子和元素。r抑制。调整了Procarials中转录开始的开始:组成型控制和调节控制。真核生物中转录开始的开始。家政和特定于织物的基因。<结合DNA的蛋白质的分裂结构基序:螺旋螺旋螺旋,锌指,亮氨铰链。染色质结构对基因表达的影响:组蛋白的乙酰化和扩展; DNA甲基化。由microRNA介导的天才沉默。<用于分析核酸的Diva Basic etohs。紫外光谱和量化
AF 后过滤器 SQ 蒸汽质量 BD 排污 SQA 蒸汽质量分析仪 BFW 锅炉给水 TAH 总酸化硬度 BIW 水中沥青 TDS 总溶解固体 BS&W 基本沉积物和水 TOC 总有机碳 BW 反冲洗 TOE 技术操作范围 bpcd 每日历天桶数 TOI 总无机碳 COSIA 加拿大油砂创新联盟 TPH 总石油烃 CPF 中央处理设施 TSS 总悬浮固体 CSS 循环蒸汽刺激 TST 管壁温度 CZ 澄清区 TQM 热质量流量计 DCS 分布式控制系统 TWT 管壁温度 EB 乳化破乳 UA 传热系数 FAC 流动加速腐蚀 UT 超声波检测 FTIR 傅立叶变换红外检测 USGPM 美国加仑/分钟 GHG 温室气体 WLS 温石灰软化 HLS 热石灰软化 WOR 水油比 HPSS 高压蒸汽分离器 WTDC 水技术开发中心 H&S 健康与安全 Y'x'TP 第 'x' 年测试计划 ILM 界面液位测量 KPI 关键绩效指标 LOI 点火损失 MagOx 氧化镁 MW 分子量 NDP 核密度分析仪 NF 纳滤 NIR 近红外传感器 OPEX 运营费用 OIW 水中油 ORF 除油过滤器 OTSG 直流蒸汽发生器 PSD 粒度分布 PW 采出水 PWC 采出水冷却器 REB 反相破乳器 RMZ 快速混合区 RT 射线照相检测 RTD 电阻温度探测器 SAGD 蒸汽辅助重力泄油 SMZ 慢速混合区 SOR 蒸汽油比
博士德特勒夫·鲍德 (Detlef Bald),政治学家、军事历史学家,慕尼黑警察局博士。约亨·伯勒 (Jochen Böhler),维也纳维森塔尔大屠杀研究所所长 汉斯·多姆里希 (Hans Domrich),德国联邦国防军警卫营指挥官,中校,同时兼任“永远的目标”联盟联邦主席马库斯·芬克 (Marcus Funck),柏林工业大学反犹太主义研究中心研究员;弗里德赫尔姆·格雷斯 (Friedhelm Greis),记者,柏林博士。 Matthias Grünzig,历史学家、宣传家,柏林教授、博士。 Rüdiger Hachtmann,柏林工业大学历史学家、波茨坦当代历史中心高级研究员Linda von Keyserlingk-Rehbein,帕绍大学历史学家,教授,博士Christine Krüger,历史学家,波恩大学教授、博士托马斯·库恩 (Thomas Kühne),历史学家,马萨诸塞州克拉克大学斯特拉斯勒大屠杀和种族灭绝研究中心主任。斯文·朗格 (Sven Lange),iG 上校,德国联邦国防军军事历史和社会科学中心 (ZMSBw) 指挥官兼驻军教会基金会董事会成员 卡斯滕·林克 (Carsten Linke),民权活动家和公关人士,波茨坦教授博士桑德拉·马斯(Sandra Maß),历史学家,波鸿鲁尔大学博士。 Rainer Orth,历史学家,法兰克福博士。菲尔。 Heiger Ostertag,退休军官和作家,Aidlingen 教授博士。 Philipp Oswalt,卡塞尔大学建筑科学家,博士。斯蒂芬妮·奥斯瓦尔特 (Stefanie Oswalt),历史学家/记者,柏林警察局博士。 Agnieszka Pufelska,汉堡大学东北研究所研究员;Renata Schmidtkunz,ORF 编辑,维也纳 Apl。教授、博士迈克尔·西科拉(Michael Sikora),历史学家,明斯特威斯特伐利亚威廉大学教授、博士Barbara Stollberg-Rilinger,历史学家,柏林科学学院院长 Jeanette Toussaint,民族学家、宣传家,波茨坦 John Zimmermann,德国联邦国防军军事历史与社会科学中心 (ZMSBw),波茨坦
执行摘要(法语和英语) 痘病毒科由 2 个亚科组成,即昆虫痘病毒亚科 (Entomopoxvirinae) 和脊索痘病毒亚科 (Cordopoxvirinae)。脊索痘病毒亚科被分为 11 个属,其中还添加了等待分类的病毒。脊索痘病毒亚科可以感染大量脊椎动物;人类感染已报告有 5 个属,其中最常见的有 4 个属(软体动物痘病毒属、亚塔痘病毒属、副痘病毒属和正痘病毒属)。它们会导致良性皮肤感染(例如口蹄疫)或潜在致命的感染(例如天花)。与致病性正痘病毒有关的公共卫生问题有两种类型:第一类是天花复发的潜在风险,第二类是因接触受感染的啮齿动物和某些家畜而引起的其他正痘病毒,如猴痘和牛痘,并且由于停止天花疫苗接种后缺乏交叉免疫而加剧。 CNR专家实验室正在开发其专业能力,以便识别和表征发送给它的菌株。 CNR专家实验室除了诊断正痘病毒外,还致力于诊断副痘病毒、软体动物痘病毒和雅塔痘病毒。菌株分离在具有足够防护等级的实验室中进行,CNR 专家实验室可以使用防护等级为 2、3 和 4 的实验室。为了将其活动纳入质量方法,CNR 开展了大量工作以实施 ISO EN 15189 标准的要求。自 2017 年 12 月起,它已获得认证,编号为 8-4084。除了专业知识和咨询活动外,CNR-LE 还开展最终研究和更上游的研究,特别是改进诊断技术以及开发预防和治疗方法。聚合酶和复制复合蛋白作为抗病毒治疗的靶点正在被优先研究。在控制手段中,疫苗载体的验证仍在继续。痘病毒科由 2 个亚科组成:昆虫痘病毒亚科 (Entomopoxvirinae) 和脊索痘病毒亚科 (Chordopoxvirinae)。脊索痘病毒亚科分为 11 个属,还有待分类的病毒。脊索痘病毒亚科可以感染大量脊椎动物;已报道人类感染了 5 个属的痘病毒,其中最常见的是 4 个属(软体动物痘病毒属、亚塔痘病毒属、副痘病毒属和正痘病毒属)。它们会引起良性皮肤感染(例如口蹄疫),但有些则会导致死亡(例如天花)。与致病性正痘病毒相关的公共卫生挑战首先与天花复发的潜在风险有关,其次,由于接触受感染的啮齿动物和家畜,并由于停止接种天花疫苗后缺乏交叉免疫而引发了其他正痘病毒疾病,如猴痘和牛痘。 CNR-LE 发展其专业知识,以识别和表征针对它的菌株。 CNR-LE 开发了诊断副痘病毒、软体动物痘病毒和雅塔痘病毒以及正痘病毒的能力。 菌株的分离是在具有足够防护水平的实验室中进行的,CNR-LE 可以使用生物安全 2、3 和 4 级实验室。 为了以质量方法注册其活动,CNR-LE 努力实施 ISO EN 15189 标准的要求。 它于 2017 年 12 月获得认证,编号为 8-4084。除了这些专业活动外,CNR-LE 还开展研究,特别是改进诊断技术和开发预防和治疗方法。研究聚合酶和复制复合蛋白作为抗病毒治疗的靶点。在预防方面,疫苗载体的验证仍在继续。
3. Neves RG、Flores TR、Duro SMS、Nunes BP、Tomasi E. 2006 年至 2016 年巴西、各地区和联邦单位家庭健康战略覆盖率的时间趋势。流行病学服务。 2018;27(3):e2017170。 http://dx.doi.org/10.5123/S1679-49742018000300008。 4. 卫生部(BR),卫生监测秘书处。传染病监测司。巴西结核病控制建议手册。巴西利亚(DF):卫生部; 2019. 5. 卫生部(BR),卫生监测秘书处,传染病监测司。巴西摆脱结核病:国家消灭结核病计划。巴西利亚(DF):卫生部; 2017. 6. Villa TCS、Brunello MEF、Andrade RLP、Orfão NH、Monroe AA、Nogueira JA 等。巴西不同地区结核病控制初级卫生保健的管理能力。文本上下文推断。 2018;27(4)。 http://dx.doi.org/10.1590/0104-07072018001470017。 7.席尔瓦 DM、法里亚斯 HBG、维拉 TCS、Sá LD、布鲁奈罗 MEF、诺盖拉 JA。结核病病例的护理生产:根据慢性病护理模式的要素进行分析。修订 Esc Enferm USP。 2016;50(2):239-44。 http://dx.doi.org/10.1590/S0080-623420160000200009。 PMid:27384203。 8. Assis EG、Beraldo AA、Monroe AA、Scatena LM、Cardozo-Gonzales RI、Palha PF 等。协调结核病控制援助。修订 Esc Enferm USP。 2012;46(1):111-8。 http://dx.doi.org/10.1590/S0080-62342012000100015。 PMid:22441273。 9. 马塞多 SM、安德拉德 RPS、索萨 CRBA、安德拉德 ASS、维拉 TCS、平托 ESG。结核病护理培训策略。考虑一下护理。 2016;21(3):1-8。 http://dx.doi.org/10.5380/ce.v21i3.45339。 10. 安德拉德高中、奥利维拉高中、贡蒂霍高中、佩索阿中学、吉马良斯中学。结核病控制计划评估:案例研究。健康辩论。 2017;41(spe):242-58。 http://dx.doi.org/10.1590/0103-11042017s18。
2017 年 9 月 6 日,在史无前例的阿片类药物泛滥夺去数千名居民生命的背景下,伊利诺伊州发布了第一份州阿片类药物行动计划 (SOAP)。1 2017 年 SOAP 基于三大支柱:预防(防止阿片类药物泛滥进一步蔓延)、治疗和康复(提供循证治疗和康复服务)和应对(避免过量用药死亡),汇集了系统和利益相关者,以防止危机进一步蔓延并满足阿片类药物使用障碍 (OUD) 患者的需求。SOAP 构成了伊利诺伊州应对阿片类药物泛滥的战略框架,设定了将 2020 年预计死亡人数减少三分之一的全州目标,并制定了一套九项循证战略来实现这一目标。SOAP 战略的实施始于 2017 年底,预计这些努力将持续到 2020 年及以后。伊利诺伊州阿片类药物危机应对咨询委员会 (Council) 为每项 SOAP 策略制定了建议举措。2018 年 2 和 2020 年 3,4 发布的实施报告描述了我们在实施这些举措方面取得的成就和进展。正如实施报告中详细描述的那样,这些成就包括:• 减少高风险阿片类药物的处方和配药。• 创建公共数据库,例如伊利诺伊州公共卫生部 (IDPH) 的阿片类药物数据仪表板 5,该仪表板提供与阿片类药物过量相关的数据,包括县和邮政编码级别的治疗提供者和纳洛酮分发地点。• 通过伊利诺伊州阿片类药物和其他物质帮助热线 (Helpline) 6 为 OUD 和物质使用障碍 (SUD) 患者提供治疗转诊和支持服务,这是一条全州多语言帮助热线。迄今为止,该帮助热线已收到超过 40,000 个电话,其网站访问量超过 200,000 次。 7 • 通过全州范围内的宣传活动,向全伊利诺伊州的人们普及阿片类药物、阿片类药物滥用和过量预防知识,以及治疗有效和患者康复的知识。 • 通过由联邦药物过量应对资金 (ORF) 拨款资助的项目,为近 30,000 名 OUD/SUD 患者提供预防、治疗和康复服务,这些拨款由伊利诺伊州人类服务部/药物使用预防和康复司 (IDHS/SUPR) 从药物滥用和心理健康服务管理局 (SAMHSA) 获得。 • 培训超过 110,000 人如何使用纳洛酮来逆转阿片类药物过量并挽救生命。 4 我们还看到了早期努力的初步成功,2018 年 IDPH 的数据显示,全州阿片类药物死亡人数从 2017 年到 2018 年下降了 1.6%,8 这是五年来死亡人数首次下降。 2018 年的数据还显示,与 2020 年预计的致命阿片类药物过量数量相比,这一数字减少了 21.6%。9 然而,非致命阿片类药物过量使用并没有减少,我们开始看到新的挑战,例如某些社区中阿片类药物危机的不平等现象日益严重。在行政命令 (EO) 2020-02 中,“加强州政府对终止阿片类药物的承诺
CRISPR/Cas 系统,特别是 CRISPR/Cas9(Jinek 等人,2012;Cong 等人,2013),已被开发为一个强大而多功能的平台,用于操作各种物种的基因组。近年来,许多报告表明其在人类基因治疗和生命科学研究以及动植物育种方面具有强大的潜在应用。本研究主题“精准基因组编辑技术和应用”中的集合可能就是明证。通常,CRISPR/Cas9 核酸酶用于切割目标基因组 DNA 以产生位点特异性双链断裂 (DSB),主要通过非同源末端连接 (NHEJ) 修复,或在较小程度上通过同源定向修复 (HDR) 修复。经典的 NHEJ 修复途径可产生小的插入或缺失 (indel),通过在开放阅读框 (ORF) 中引入移码导致目标编码基因的功能丧失。NHEJ 诱变是一种非常流行的基因操作策略。除了经典的 NHEJ 之外,替代或准确的 NHEJ 介导的修复可以实现精确的基因组 DNA 缺失(Guo et al., 2018; Shou et al., 2018)。Chao 等人和 Zhao 等人在本研究主题中的两篇论文分别描述了等位基因特异性敲除和双基因敲除小鼠模型的制造,用于快速疾病基因验证和人类异种移植研究。N6-甲基腺苷 (m6A) 是一种成熟的真核 mRNA 表观遗传修饰。越来越多的研究发现了 m6A 甲基化的意义,这催生了“表观转录组学”这一新兴领域。本卷中的另一篇文章( Huang 等人)描述了小鼠精原细胞 GC-1 细胞中脂肪质量和肥胖相关( Fto )基因的敲除研究,该基因已被证明作为 m6A 去甲基化酶作用于表观转录组( Li 等人,2017 年; Lin 等人,2017 年)。另一方面,HDR 修复途径依赖于同源供体 DNA 在 DSB 位点产生靶向基因敲入或在两个 DSB 位点之间产生基因替换。精确的点突变和设计的小插入/缺失也可以通过这种方法实现。本专题中的一篇论文介绍了利用CRISPR/Cas9介导的HDR在人诱导性多能干细胞(iPSC)中精准校正Rett综合征(RTT)中甲基-CpG结合蛋白2(MECP2)基因的努力。该报道为基于iPSC的疾病建模和基因校正治疗提供了参考(Le等)。虽然基于HDR的基因组可以实现基因插入和精准替换,但在精准编辑过程中仍面临一些缺点,包括HDR效率低、双等位基因靶向失败、正向选择的复杂性以及选择标记的重新删除。