访问微生物学是一个开放的研究平台。可以通过本文的在线版本找到预印刷,同行评审报告和编辑决策。2023年8月29日收到; 2024年5月14日接受;于2024年7月4日发布作者隶属关系:1个生物端里控制Associates,Inc。,PO Box 3659,普林斯顿,NJ 08540-3659,美国; 2 Luminultra Technologies Ltd,皇家路819号,B楼建筑物,弗雷德里克顿,NB E3G 6M1,加拿大。*通信:Frederick J. Passman,PassCapt@live。com关键字:ATP;生物负责;柴油机;燃料; qpcr。缩写:AEC,腺苷酸能电荷;方差分析,变异分析; ATP,三磷酸腺苷; [CATP],细胞ATP浓度; CN,C碳; N-分子中的碳原子数量;简历,方差系数; GC,基因副本; LOD,检测极限; OTU,运营分类单元; PCR,聚合酶链反应; QPCR,定量PCR; RLU,相对光单元; [TATP],总ATP浓度; TF,全真菌; TP,原核生物。本文的在线版本可以使用五个补充表。000695.V4©2024作者
AAEE 飞机与军备实验机构 AOC-in-C 空军军官总司令 AS 反潜 BBSU 英国轰炸调查单位 BCATP 英联邦空军训练计划 CAS 空军参谋长 CBRM 加州方位比率法 CFC 中央飞行管制 CIGS 帝国总参谋长 C-in-C 总司令 CNS 海军参谋长 CRD 民用修理站 EATS 帝国航空训练计划 FCO 飞行管制组织 FCS 飞行管制参谋部 HC 高容量 HCU 重型改装装置 HE 高爆弹 HMS 国王陛下的舰船 hp 马力 ID 识别 kW 千瓦 LMF 缺乏道德品质 MAP 飞机生产部 MP 国会议员 MPH 英里每小时 NOCOP 禁止复印 OTU 作战训练单位 POL 汽油和润滑油 PRO 公共档案办公室 RAE 皇家飞机研究院 RAF 皇家空军 RAAF 澳大利亚皇家空军 RCAF 加拿大皇家空军空军 RN 英国皇家海军 RNAS 英国皇家海军航空兵团 RNZAF 新西兰皇家空军 SAA 小型武器弹药 SAE 美国工程师协会 SAP 半穿甲弹 SHAEF 最高司令部 盟军远征军 SIGINT 信号情报
抽象目标。该研究的目的是探索微生物群落,致病细菌和高风险抗生素抗生素基因的特征,沿海海滩与多功能宿主之间的相关性,以确定中国热带海岸海滩上的粪便源污染物的潜在物种生物标志物。“一项健康”方法用于海滩和温血宿主的微生物研究。微生物使用16S rRNA基因扩增子和shot弹枪元基因组学上分析了社区。非盐海滩的混乱,辛普森,香农和王牌索引大于属属和OTU级别的盐海滩(P <0.001)。bacteroidota,halanaerobiaeota,蓝细菌和富公司在盐海滩上很丰富(p <0.01)。人类采购的微生物在盐海滩上更丰富,占0.57%。粪便核酸杆菌和hallii菌群被认为是人类粪便污染的可靠指标。在盐海滩上观察到了耐高风险的碳苯甲酸克雷伯氏菌肺炎和基因型KPC-14和KPC-24。TET(X3)/TET(X4)基因和四种类型的MCR基因在海滩和人类上共发生; MCR9.1占多数。TET(X4)在蓝细菌中发现。在中国海滩上很少报道,但观察到病原体,例如藤本植物,肺炎军团菌和幽门螺杆菌。低微生物社区的多样性并未表明风险降低。高危ARM向极端沿海环境的转移应受到足够的关注。
蚊子中存在的微生物及其相互作用是影响昆虫发育的关键因素。其中,沃尔巴基亚与宿主密切相关,并影响多个适应性参数。在这项研究中,来自两个实验室Culex quinquefasciatus隔离菌的细菌和真菌菌群(野生型和四环素固定)的特征是在不同的发育阶段和喂养条件下ITS2和16S RRNA基因的MetAgenome扩增子测序。我们确定了572个细菌和61个真菌OTU。两个孤立的细菌群落都呈现出可变的细菌群落和各组之间多样性分布的不同趋势。在腌制的分离线的成年人中检测到了最低的细菌丰富度,而在血液喂养的蚊子中,真菌丰富度高度降低。β多样性分析表明,隔离是分化细菌群落的重要因素。考虑组成,青霉是主要的真菌属,而沃尔巴基亚的主导地位与肠杆菌(主要是索尔塞利亚和塞拉蒂亚)成反比。这项研究提供了对蚊子微生物组的更完整概述,强调了特定的高度丰富成分,这些成分应在微生物操纵方法中应考虑以控制载体 - 传播疾病。
抽象理解雕刻鱼类肠道微生物组的因素是挑战,尤其是在以高环境和宿主基因组复杂性为特征的自然种群中。然而,密切相关的宿主是通过突显的生物学和共晶发育模式来解解宿主进化史对微生物组组装的贡献的宝贵模型。在这里,我们提出,最近在南大洋的几种竖琴物种的多样化将允许检测宿主与其微生物组之间强大的系统发育一致性。我们表征了来自四个野外收集的harpagifer物种的77个个体的肠粘膜微生物组(Teleostei,notothenioidei),分布在南大洋的三个生物地理区域。我们发现海水物理化学特性,宿主系统发育和地理学共同解释了竖鼠肠粘膜中细菌群落组成的35%。harpagifer spp的核心微生物组。肠粘膜的特征是多样性低,主要由选择性过程驱动,并由超过80%的个体中检测到的单个Aliivi Brio操作分类单元(OTU)主导。在包括Aliivibrio在内的核心微生物组分类群的几乎一半(包括Aliivibrio)在微反应分辨率下具有宿主系统发育的共生信号,表明与Harpagifer具有亲密的共生关系和共同的进化历史。清晰的细胞传友和共晶发育信号强调了harpagifer模型在站立在塑造肠道微生物组组装中的作用下的harpagifer模型的相关性。我们提出,最近的竖琴数多样化可能导致了Aliivibrio的多样化,表现出反映宿主系统发育的模式。
一个广泛使用的具有较长非倒置片段的平衡子的重要例子是 X 染色体平衡子 First Multiple 7 (FM7, Merriam 1968),其中在 FM7c 染色体上发现的雌性不育突变 singed, sn X2 因 4E1-11F2 倒位内的双交叉事件而多次丢失 (Miller et al. 2016a)。我们研究了该区域中的几个雌性不育基因和雌性致死基因(例如 ovo 、 snf 、 Sxl 、 otu ; Grammates et al. 2022),并希望实现更好的平衡。由于我们使用的这些基因的等位基因在雄性中可存活且可育,因此我们希望平衡子具有半合子和纯合致死性。为了构建更好的平衡子,我们利用了 CRISPR/Cas9 基因组编辑系统 (Ren 等人 2013;Port 和 Bullock 2016;Benner 和 Oliver 2018),针对 FM7c 的这个大型有问题的倒位 (4E1-11F2,图 1B)。这个片段中的新倒位将更好地抑制此区域内的双交叉事件。为了有目的地设计一个新的倒位,我们想要在 4E1-11F2 片段内创建一个断点,并在 FM7c 上此片段外的另一个区域创建一个断点。我们决定在 FM7c 平衡子染色体中的 cut (ct,在 4E1-11F2 内,图 1B) 处进行倒位,这是一个必需基因,但具有可行的等位基因,以及 white a (wa,在 4D7-1B3 内,图 1B)。为了实现这一目标,我们创建了一个多顺反子 CRISPR gRNA 构建体(Port 和 Bullock 2016;Benner 和 Oliver 2018),其中包含两个针对 wa 第一个内含子的 gRNA(Grammates 等人 2022)和两个针对 ct 和 ct 6 之间区域的 gRNA
尽管尼泊尔已经报道了180多种淡水鱼类,但对它们的生态和分布知之甚少。需要此信息,因为它们的多样性可能会受到水力发电等发展的威胁。我们在两条主要的河流系统中进行了尼泊尔的第一个基于环境DNA(EDNA)的鱼类生物多样性评估 - 卡尔纳利河(KR),该河仍然是原始的和Trishuli River(TR),并带有许多水力发电植物。通过滤波(0.45μm孔径)在每个研究地点的不同采样点上聚集了EDNA。收集了总共224个EDNA样品(KR = 162和TR = 62),利用Illumina测序平台通过12S rRNA元标记方法从中鉴定出鱼类。alpha和beta多样性。此外,在KR站点中,FISH(n = 795)被捕获,并使用基于COI基因的DNA条形码方法来鉴定尼泊尔尼泊尔的第一个鱼DNA参考数据库。现场采样通过形态和DNA栏编码确定了21种,其中Barilius spp。和schizothorax spp。是最丰富的。从244个EDNA样品中,在TR中鉴定出24个操作分类单元(OTU),在KR中鉴定了46个单位,其中19个位点共有19个地点,27个位置在KR中是独一无二的,仅在TR中有5个。大多数鱼类是塞具糖和siluriformes的命令,带有Barilius spp。和schizothorax spp。是最丰富的。长距离迁移鱼(Tor Spp,Neolissochilus
瘤胃产量是瘤胃发酵过程中产生的代谢氢的主要水槽,并且是温室气体(GHG)排放的主要贡献者。个体反刍动物表现出不同的甲烷产生效率;因此,了解低甲烷发射动物的微生物特征可能会给肠甲烷提供降低的机会。在这里,我们研究了瘤胃发酵与瘤胃微生物群之间的关联,重点是甲烷产生,并阐明了在低甲烷产生的奶牛中发现的细菌的生理特征。13个荷斯坦母牛喂养基于玉米青贮饲料的总混合评分(TMR),并检查了进食消化,牛奶产量,瘤胃发酵产品,甲烷的产量和瘤胃微生物组成。使用主要成分分析将母牛分为两个瘤胃发酵组:低和高产生甲烷的牛(36.9 vs. 43.2 l/dmi消化),具有不同的瘤胃短链脂肪酸比率[(C2 + C4)/C3](3.54 vs. 5.03)和Drul Matter(69)和Druly(69)(69)(69)(69)(69)。但是,两组之间的干物质摄入量(DMI)和牛奶产量没有显着差异。此外,两组之间分配给未经培养的Prevotella sp。,琥珀尼维利奥和其他12种细菌系统型的OTU有差异。特别是先前未经培养的新型Prevotella sp。,在低甲烷产生的母牛中的丰度更高。这些发现提供了证据表明Prevotella可能与低甲烷和高丙酸酯产生有关。但是,需要进一步的研究来改善对肠甲烷缓解涉及的微生物关系和代谢过程的理解。